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NON-TECHNICAL SUMMARY 

Nearly 1 in 5 children in the United States lives in a household whose income is below the 

official federal poverty line, and more than 40% of children live in poor or near-poor 

households. Research on the effects of poverty on children’s development has been a 

focus of study for many decades and is now increasing as we learn more about the 

implications of poverty for children. A recent addition to the study of the implications of 

poverty for children has been the application of neuroscience-based methods. Various 

techniques including neuroimaging, neuroendocrinology, cognitive psychophysiology, and 

epigenetics are beginning to document ways in which early experiences of living in 

poverty affect infant and child brain development. In this paper, we discuss whether 

there are truly worthwhile reasons for adding neuroscience and related biological 

methods to study child poverty, and how their use and the knowledge they produce, might 

help guide developmentally-based and targeted interventions and policies for these 

children and their families. 
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ABSTRACT 

Nearly 1 in 5 children in the United States lives in a household whose income is below the 

official federal poverty line, and more than 40% of children live in poor or near-poor 

households. Research on the effects of poverty on children’s development has been a 

focus of study for many decades and is now increasing as we accumulate more evidence 

about the implications of poverty. The American Academy of Pediatrics recently added 

“Poverty and Child Health” to its Agenda for Children to recognize what has now been 

established as broad and enduring effects of poverty on child development. A recent 

addition to the field has been the application of neuroscience-based methods. Various 

techniques including neuroimaging, neuroendocrinology, cognitive psychophysiology, and 

epigenetics are beginning to document ways in which early experiences of living in 

poverty affect infant brain development. We discuss whether there are truly worthwhile 

reasons for adding neuroscience and related biological methods to study child poverty, 

and how might these perspectives help guide developmentally-based and targeted 

interventions and policies for these children and their families. 

Keywords: child poverty; brain; development; socioeconomic status  

Suggested citation: Pollak, S.D. & Wolfe, B.L. (2020). ‘How Developmental Neuroscience 

Can Help Address the Problem of Child Poverty’. Life Course Centre Working Paper Series, 

2020-02. Institute for Social Science Research, The University of Queensland. 

 

 



 

 1 

Introduction 

In 2013, the American Academy of Pediatrics added “Poverty and Child Health” to its Agenda 

for Children (American Academy of Pediatrics, 2014) as a recognition of the broad and enduring 

effects of poverty on children’s development. These public health implications are so profound 

that both UNICEF and the World Bank have not only recognized the serious problems caused by 

child poverty, they have also called for the need to end extreme poverty by 2030 (UNICEF and 

World Bank Group, 2016). Children living in poverty are more likely to have poor health 

compared to peers not living in poverty, and this gap in health widens as children age (Case et 

al., 2002; Fletcher & Wolfe, 2014). Children from impoverished families do worse on nearly all 

measures of academic attainment, from school readiness to grades to standardized test scores 

(Duncan & Murnane, 2011; McKinney, 2014; Schuetz, Ursrpung & Woessman 2005). And 

compared to children in financially-secure settings, children in poverty have high rates of 

behavioral problems (Ackerman, Brown & Izard, 2004; Brooks-Gunn & Duncan, 1997; Duncan, 

Brooks-Gunn & Klebanov,1994). These developmental gaps persist into adulthood and are 

reflected in lower lifetime earnings, worse health, and reduced psychological well-being (Al 

Hazzouri, Haan, Galea & Aiello, 2011; Guralnik, Butterworth, Wadsworth & Kuh, 2006; Minkler, 

Fuller-Thomson & Guralnik, 2006; Wadsworth et al., 2016). The associations between child 

poverty and negative outcomes are well documented, the mechanisms causing these sequelae 

are not well understood. A relatively recent addition to the field has been the application of 

brain-based methods to better understand the developmental consequences of child poverty. 

Here, we address questions about whether and how these approaches might be useful in guiding 

developmentally-based and targeted interventions and policies for children living in poverty. 

Setting the Context: What do we mean by poverty and socioeconomic 

status? 

It is often difficult to compare studies on the effects of poverty on child development. This is 

because of the wide and inconsistent range of variables that researchers use to define their 

samples (Pollak & Wolfe, In press). As we will explain below, among researchers there is no 

single measure of what constitutes poverty. A second issue is a lack of clarity between a family’s 

income and their socio-economic status (Farah, 2018). Simply put, poverty reflects low income 

or low access to resources. Socioeconomic status, or SES, is an index of who is better off or 

worse off in a given society. Although often used interchangeably, these are different 
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constructs. For example, the amount of money someone makes is not the same as occupational 

prestige. A graduate student may have a very low income in the short term but will eventually 

have a high income; a minister may have a low income but also free housing and high local 

prestige. For these reasons, understanding how family circumstances are affecting the 

development of children may require that researchers distinguish factors such as higher versus 

lower income, more versus less education, better versus worse neighborhoods, and prestigious 

versus less prestigious jobs. While these factors are associated with each other, they each 

confer slightly different risk and protective factors for children. 

Operationally defining poverty-- especially in a global context-- is a complex issue (Pollak and 

Wolfe, In press). Much has been published about what constitutes poverty, how to define it, 

and how to measure it (Institute for Research on Poverty, 2016; Short, 2016). Issues range from 

whether to include only income or also in-kind benefits; the length of time under consideration 

(because families can move in and out of poverty over different periods of a child’s life, 

depending on how poverty is measured); whether poverty measures should be absolute or 

relative to the median income in a given community; whether poverty measures should give an 

indication of the depth of poverty and whether a measure of child poverty should go beyond 

family income to include broader factors such as parent’s human capital and/or social isolation. 

Studies of child poverty in the United States often make reference to a threshold called the 

Federal Poverty Line (FPL). This concept was developed by Mollie Orshansky of the Social 

Security Administration in the 1960s (Watts, 

https://www.irp.wisc.edu/publications/focus/pdfs/foc92e.pdf). The FPL is updated each year 

by the Census Bureau. The Census Bureau uses a set of money income thresholds that vary by 

family size and composition to determine who is in poverty. If a family's total income is less 

than the family's threshold, then that family and every individual in it is considered in poverty. 

The official poverty thresholds do not vary geographically, except for Hawaii and Alaska; they 

are updated annually for inflation using the Consumer Price Index. The official poverty 

definition uses money income before taxes and does not include capital gains or noncash 

benefits (such as public housing, Medicaid, and SNAP, the Supplemental Nutrition Assistance 

Program). This threshold was initially developed to provide a yardstick for progress or regress 

in government antipoverty efforts. But it is important for child development researchers to 

recognize that the FPL is a simplification of the phenomenon of poverty created for 

administrative uses, such as determining financial eligibility for certain federal programs.  

https://www.irp.wisc.edu/publications/focus/pdfs/foc92e.pdf
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The FPL is used to determine who is eligible for certain federal subsidies and aid such as 

Medicaid, SNAP, Family and Planning Services, the Children's Health Insurance Program (CHIP), 

the National School Lunch Program, and subsidies on the ACA (Affordable Care Act) exchanges. 

The actual percentage of the FPL determining eligibility may sometimes be set by States so 

long as they are within parameters set by the federal government. Thus, the FPL is not meant 

to be an index of what people need to live well or to allow children to thrive. And it is not clear 

that an income above the FPL is sufficient to support a family with young children. Indeed, 

research suggests that families with children need an income of at least twice the FPL to meet 

most basic needs, on average and varying by location (Cauthen & Fass, 2008). Part of the reason 

for this misalignment is that the original FPL was based on the premise that food accounted for 

a third of a low-income family’s expenditures, but that is less true today. 

The issue of a family’s local cost of living does not factor into the FPL, but creates significant 

variance. As an example, in 2019 the federal government classified a family of four earning up 

to $117,400 as low-income in the San Francisco Bay Area 

(https://www.huduser.gov/portal/datasets/il/il2018/2018summary.odn). To generate this 

number, officials at the Department of Housing and Urban Development factor in the median 

income and average housing costs in an area (an index slightly different from the FPL). For 

reference, an annual income of between two and seven times the California Poverty Measure 

is considered middle class. By this estimate, a middle class income in the San Francisco Bay 

Area would range from $74,750 to $261,623 (https://www.ppic.org/interactive/california-

poverty-by-county-and-legislative-district/). By way of contrast, a family of four earning 

$63,600 would be classified as low-income in Champaign-Urbana, IL, and a middle-class income 

in this area would range from approximately $43,000 to $130,00. 

There are other ways that researchers measure child poverty. Some research teams use 

questionnaires to target income, whereas many other researchers in Organization for Economic 

Co-operation and Development (OECD) countries define families living below 40 or 50% of the 

median income of that country. Studies of child poverty in developing countries tend to use 

dollars per day below a set benchmark. Still other researchers calculate an income-to-needs 

ratio, the concept used for the FPL, where needs are defined as the FPL.  In other cases, a 

family’s specific situation might be referenced such as the presence of a person with significant 

disabilities, which is likely to increase “needs” beyond the FPL.   

https://www.huduser.gov/portal/datasets/il/il2018/2018summary.odn
https://www.ppic.org/interactive/california-poverty-by-county-and-legislative-district/
https://www.ppic.org/interactive/california-poverty-by-county-and-legislative-district/
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Other researchers focus on specific aspects of the experience of poverty, such as food 

insecurity, availability of stable housing, or minimum standards in housing. Indeed, recently 

published reports have used a vast array of different kinds of questions for research participants 

to characterize a child’s family as living in poverty. These range from varied and idiosyncratic 

ways to ask research participants about their family income, to asking about the mothers’ level 

of education. This latter issue of maternal education is problematic, as discussed below. 

Frequently in developmental science, parent education is used as the sole proxy for children’s 

socio-economic environments. But parent education, alone, provides little precision or insight 

into how children experience poverty (Duncan & Magnuson, 2012). Moreover, parental 

education is more a measure of socio-economic status, which is a different construct from 

poverty or family income (Pollak & Wolfe, In press). It is not yet clear whether low family 

income has the similar developmental effects on children as low family socio-economic status 

(Hackman, Farah, Meaney, 2010). A recent article that compares income and SES effects on the 

health of older adults finds that income is a separate and indeed more closely tied gauge than 

other measures of SES (Darin-Mattsson, Fors & Kåreholt, 2017).  

In summary, there is no single, simple measure of family income or parent education that is 

sufficient to index the developmental context of poverty for a child. Even while objective 

indices such as the federal poverty line may provide a useful parameter for recruiting a study 

sample, there is no evidence that a child living marginally above the federal poverty level is 

appreciably better off than one marginally below, and indeed some researchers include those 

living below 133 or 200 percent of the FPL as poor or near poor. Moreover, poverty and socio-

economic status are separate, albeit overlapping, constructs with different implications for 

children’s development. For these reasons, researchers need to be mindful of the fact that 

many measures of child poverty are limited, likely underestimate poverty, may not consider 

other resources available to children such as tax credits, food stamps, or subsidized housing on 

the positive side or tax liabilities, out-of-pocket medical costs, or work-related expenses on 

the negative side (each could either over or undercount resources available to children), and 

often make no adjustment for geographic variation. While U.S. researchers tend to measure 

deprivation by assessing whether households can afford to meet a set of basic needs, many 

other developed countries use a “relative” measure of poverty based on the share of families 

below 40 or 50 percent of median income, on the premise that in a developed society, 
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measuring the number of families far from the median provides a better measure of whether 

families are outside of the social mainstream. 

How Many Children are Affected by Poverty? 

Nearly 40% of children in the United States live in poor or near-poor households (Child Trends 

Database, 2018; Figure 1). Specifically, in 2017, 12.8 million children in the US were living in 

households with incomes below the official poverty threshold; 39% of these children were living 

in households with incomes below twice the poverty threshold (Child Trends Databank, 2018). 

These numbers reflect only a limited twelve-month snapshot of child poverty. Most of these 

children have parents who work, but low wages or unstable employment result in insufficient 

family resources. The number of children in the U.S. who spend some portion of their childhoods 

living in poverty line is far higher than any single year estimate, with the youngest children at 

the greatest risk (Jiang, 2016). Developed countries other than the United States have lower 

rates of poverty, but there are still substantial numbers of children in these countries who are 

living in under-resourced families. According to UNICEF, among 35 economically advanced 

nations, the rate of children living in poverty ranged from 4.7% in Iceland, to 13.3% in Canada, 

23.1% in the United States, and a high of 25.5% in Romania (UNICEF, 2012). In the developing 

world, UNICEF estimates that extreme child poverty (living on less than US $1.90 per day) 

describes 19.5 per cent of children, compared to 9.2 per cent of adults. This translates into 

approximately 385 million children living in extreme poverty across the globe (UNICEF and 

World Bank Group, 2016). A report by the U.S. National Center for Children in Poverty (Koball 

& Jiang, 2018) reveals that 44% of children in the U.S. under age 9 years live in low income 

families with 21% defined as poor (at the FPT) and 23% as near poor (100-199% of the FPT); 

those percentages represent about 15 million children.  

What is it About Poverty that Affects Children’s Development? 

From a developmental science perspective, the effects of child poverty are likely to be multi-

determined (Duncan, Magnusson & Votruba-Drzal, 2017). While a full review of the poverty 

literature is beyond the scope of this paper, even a partial listing of candidate factors highlights 

the range of issues under the umbrella of “poverty” potentially affecting children. Causal 

factors that have been proposed to link poverty to poor outcomes in children have included 

limited access to medical care and insurance (Meyer & Wherry, 2016); high exposure to 

pollution and environmental toxins known to affect neurological functioning (Rowe et al., 2016; 
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Currie et al., 2014; Currie, Greenstone, & Moretti, 2011); high exposure to violence (Cancian, 

Slack, & Lang, 2010); inadequate nutrition (de Groot et al., 2015); high exposure to infectious 

diseases (Hotez, 2011); social pressure associated with income inequality or low income relative 

to a local community (Buttrick & Oishi, 2017; Halfon et al., 2017, Pickett & Wilkinson, 2015); 

low economic mobility (Baulch & Hoddinott, 2000; Chetty & Hendren, 2018); environments 

characterized by instability and chaos, as reflected in factors such as food insecurity and 

unstable housing (Evans & Garthwaite, 2014; Schneider, 1992); and institutionalized racism 

(Chetty, Hendren, Jones & Porter, 2018) and, of course, stress which we discuss in depth below.  

One reason that it is not yet clear which of these factors causes problems associated with 

poverty is that it might be poverty itself that is the problem. When a child lives in poverty, 

many of these factors are present at the same time, over a protracted period of time. Rather 

than any one or two of these factors being primary in influencing a child, it may well be that it 

is the confluence of multiple factors that threatens a child’s well-being.  

How Might New Scientific Approaches Help? 

Various neuroscience techniques such as neuroimaging, neuroendocrinology, cognitive 

psychophysiology, and epigenetics are now being employed to examine aspects of brain 

development and functioning associated with early experiences of living in poverty. There are 

many good reasons for considering these types of biological methods alongside the traditional 

social science approaches to study child poverty. For example, it is well established that early 

experiences are critical for shaping many aspects of brain development related to children’s 

behavioral functioning (Birn et al., 2017; Fox et al., 2010; Johnson, 2001; Romens et al., 2015; 

Wismer Fries, 2005). In humans, maturation of the brain regions responsible for higher cognitive 

functioning continues throughout childhood and adolescence, leaving a long window of 

opportunity and vulnerability for environments to influence brain plasticity (Bunge et al., 2002; 

Blakemore et al., 2006).  

Traditionally, much of the research on child development in the context of poverty has focused 

on reduced stimulation and reduced opportunities for learning compared to children in higher-

income homes (Jensen et al., 2018). But it is not obvious how environments marked by poverty 

influence developmental mechanisms. For example, poverty is also characterized by an 

overabundance of types of stimulation that can negatively affect development. These factors 

include the presence of enduring stressors such as ambient noise (including background noise 
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such as that associated with ongoing and unmonitored television), persistent household chaos, 

recurring conflicts among family members, exposure to environmental toxins, parental stress, 

and neighborhood violence—any of which might possibly alter physiologic systems involved in 

stress regulation, comfort, and perceived security/stability (Coley, Lynch & Kull, 2015; Deater-

Deckard, Sewell, Petrill & Thompson, 2010; Evans & Kim, 2013; Miller & Chen, 2013; Hair, 

Hanson, Wolfe & Pollak, 2015). Thus, there may be numerous (and not mutually exclusive) 

potential chronic effects on neural activity that can influence brain and behavioral 

development (McEwen & Gianaros, 2010; Smith & Pollak, in press). For these reasons, the use 

and integration of a variety of behavioral, cognitive, and neuroscience measures permits 

researchers to better understand exactly how and why poverty reduces the potential of 

children. The addition of these biological approaches to the social science disciplines that 

traditionally address poverty holds tremendous promise for increasing knowledge that could 

lead to more effective policies aimed at reducing the negative sequelae of poverty. 

Although research on poverty and brain development in humans is relatively recent, the 

cumulative evidence thus far is yielding new and highly convergent perspectives on how and 

why poverty may be linked to myriad behavioral outcomes throughout the life course. There 

have been a number of thorough reviews of recent findings pertaining to child poverty and the 

brain, so we direct readers to these recent and thorough papers rather than reproduce a full 

literature review here (See Blair & Raver, 2016; Farah, 2018; Johnson, Riis, Noble, 2016). 

Our own work began by examining the effects of poverty on brain regions tied to academic 

functioning in children (Figure 2). We focused on brain regions known to have protracted 

periods of post-natal development, and brain tissue with low levels of heritability (and 

therefore a higher likelihood of being influenced by a child’s experiences). This included tissue 

such as gray matter (the parts of the brain consisting mainly of nerve cells) and brain regions 

including the frontal lobe (with ties to the organization of behavior, judgment, impulse control, 

and attention), the temporal lobe (implicated in memory, language, and emotion), and the 

hippocampus (associated with learning, memory and processing of contextual information). Our 

initial finding was an association between socioeconomic status and the hippocampus, a brain 

region known to be affected by stress. We measured the volume of brain regions from brain 

images (N = 317) acquired from children across the socioeconomic spectrum. Children from 

lower income backgrounds had lower hippocampal volumes (Hanson, Chandra, Wolfe, & Pollak, 

2011). We next examined the trajectories of brain development in infants and toddlers between 
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five months and four years of age, as children began to experience the effects of poverty. These 

children underwent MRI scanning, completing between 1 and 7 scans longitudinally. We found 

that infants from low-income families had less gray matter, tissue critical for processing of 

information and execution of actions. Children from lower-income households in this study had 

slower trajectories of brain growth during infancy and early childhood (Hanson, Hair, Shen, Shi, 

Gilmore, Wolfe, and Pollak, 2013; Figure 3). In a subsequent study, we examined whether these 

poverty-related differences in brain growth were associated with children’s academic 

functioning. Using a longitudinal cohort study of participants from 4 to 22 years of age, we 

found that poverty was tied to structural differences in several areas of the brain associated 

with school readiness skills, with the largest influence observed among children from the 

poorest households. Gray matter volumes of children below 1.5 times the federal poverty level 

were significantly below developmental norms. These developmental differences had 

consequences for children’s academic achievement. On average, children from low-income 

households scored lower on standardized educational tests of skills such as reading 

comprehension and math computation, and as much as 20% of the gap in test scores could be 

explained by maturational lags in development of the frontal and temporal regions of the brain 

(Hair, Hansen, Wolfe, and Pollak, 2015; Figure 4). 

What has been notable and striking is that although the neuroscience of poverty is a relatively 

new and emerging area of scholarship, findings across independent laboratories, using unique 

samples, have been highly convergent. Most studies of the correlates of poverty have focused 

on regional changes in brain morphology in regions related to language, emotion, and executive 

functions (Brito & Noble, 2014). These include replicated associations of poverty with the 

hippocampus (Barch et al., 2016; Brody, Gray, Barton et al., 2017; Ellwood-Loew et al., 2018; 

Hair et al., 2015; Hanson et al., 2011, 2015; Luby et al., 2013), amygdala (Brody et al., 2017; 

Hanson et al., 2015; Javanbakht et al., 2015; Kim et al., 2013; Luby et al., 2013; Merz et al., 

2018; Muscatell et al., 2012;), and prefrontal lobe (Hair et al., 2015; Hanson et al., 2013; Holz 

et al., 2015; Noble et al., 2006, 2015; Figure 5). Differences also emerged for two different 

indices of the communication between brain regions, resting-state functional connectivity 

(Sripada et al., 2014), and white matter tracts (Dufford and Kim, 2017; Gianaros et al., 2013; 

Gullick et al., 2016; Noble et al., 2015). The largest sample to date reported wide-spread 

reductions in the surface area of the brain associated with childhood poverty (Noble et al., 

2015). In another study, lower family income tended to be associated with reduced activation 

of the frontal lobe when children had to activate their memory systems (Finn et al., 2017). 
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These differences in brain function explained differences in mathematics achievement test 

scores, an effect similar to our earlier (2015) findings. To date, multiple papers have reported 

associations between socioeconomic disadvantage and reduced cortical gray matter, as 

measured in terms of volume (Hair, Hanson, Wolfe, & Pollak, 2015; Jednorog et al., 2012), 

thickness (Lawson, Duda, Avants, Wu, & Farah, 2013; Mackey et al., 2015;), and surface area 

(Noble et al., 2015). These brain measures correlate with measures of language development 

(Romeo et al., 2017), executive functioning (Noble et al., 2015), standardized tests of academic 

achievement (Finn et al., 2017; Hair et al., 2015; Mackey et al., 2015), memory (Leonard, 

Mackey, & Finn, 2015), and well-being/health (Evans, 2016; Krishnadas, McLean, Batty, et al., 

2013). Thus, while research in this area is still in a relatively early stage, there is a high degree 

in consistency among the findings. 

This new focus on biobehavioral mechanisms underlying poverty is poised to guide empirically 

based and targeted interventions and policies for these children and their families, as well as 

offering promise about ways to evaluate the effectiveness of various anti-poverty programs 

focusing on children’s development. This is an important and timely issue given that most anti-

poverty programs suffer from low effect sizes.  A fairly recent review of studies that evaluate 

early schooling found little robust evidence of significant, positive effects of most interventions 

(Duncan and Magnuson, 2013). The authors found “education programs appear to boost 

cognitive ability and early school achievement in the short run. However, most of them show 

smaller impacts than those generated by the best-known programs, and their cognitive impacts 

largely disappear within a few years” (p.110). Duncan and Magnuson do suggest that more 

recent studies suggest possible longer term effects on years of education, earnings and lower 

crime, but clearly the evidence is mixed on the effectiveness of early childhood schooling, a 

currently popular intervention. The evidence of fade out of effects suggests a possible major 

contribution for “brain approaches. That is, since findings regarding short and longer-term 

impacts on “cognitive and noncognitive” outcomes are mixed, it is uncertain what investments 

in skills, behaviors, or developmental processes are particularly important in producing positive 

impacts across the child’s lifespan. The National Academies of Sciences, Engineering, and 

Medicine sponsored a 2019 report that responded to a Congressional mandate “to identify 

evidence-based programs and policies for reducing the number of children living in poverty in 

the United States by half within 10 years” (p.1). While they found evidence that a handful of 

programs (such as the earned income tax credit, the Supplemental Nutrition Assistance 

Program, and housing subsidies), do reduce poverty and lead to better child outcomes, the 
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evidence of how best to spend public dollars remains limited. The report concludes: the 

“[Office of Management and Budget] should also convene working groups charged with assessing 

the report’s recommendations for research and data collection to fill important gaps in 

knowledge about effective anti-child-poverty programs” (p. 6). We believe brain based research 

can help us to learn how best to spend public dollars in this endeavor.  

How can these data be applied to helping disadvantaged children? 

Below, we suggest five ways in which neuroscience-based approaches can be harnessed to 

improve the circumstances of children living in poverty. 

(1) Leverage a culture that values biology 

Though perhaps the least scholarly benefit of neuroscience, this rationale may nonetheless 

confer significant benefit to anti-poverty efforts on behalf of children. For better and for worse, 

issues that are framed as biomedical tend to get attention, are elevated as priorities, and 

receive support that is not viewed as politically partisan. And there is evidence that 

neuroscience data is viewed by the general public as especially compelling. For these reasons, 

bringing brain-based measures to bear upon issues of child poverty holds potential to not only 

to demonstrate effects of social programs, but to also increase the likelihood that these effects 

are noticed and discussed by policy makers. 

This is such a non-scholarly argument that we want to be clear about what are not saying. First, 

neuroscience data does not have elevated ontological status relative to behavioral evidence. 

Second, no one needs neuroscience data to convey that poverty is bad. And third, all behavior 

has a neurobiological underpinning, so the mere fact that a behavioral phenomenon has a brain 

correlate is hardly a groundbreaking insight. What is of potential value-- aside from real 

advances in understanding how poverty influences basic aspects of children’s biological 

development-- is that at the very least, studies that provide neurobiological evidence may bring 

more interested parties to the table. There is potential leverage to be gained from the fact 

that neuroscientific evidence is often assumed-- incorrectly— by laypersons to be more valid 

and robust because the lay public often lacks the training or expertise that would enable them 

to view neuroscience data through a critical lens. The lack of knowledge that most laypersons 

have about the workings of the brain, much less the nuances of neuroscientific methods, often 

leads them to be overly impressed by brain science, even when behavioral research may be 
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more relevant to policy decisions. The point is not that neuroscience data itself is not useful or 

is somehow “duping” the general public. We are simply stating that if brain data engages the 

interest and attention of people who might not otherwise be inclined to support anti-poverty 

programs, that is a real benefit for everyone.  

There has been some empirical research about the extent to which neuroscience data compels 

people. Some studies report that brain images have a particularly persuasive influence and that 

explanations of psychological phenomena generate more public interest when they contain 

neuroscientific information. For example, presenting brain images with articles resulted in 

higher ratings of scientific rigor for arguments made in those articles as compared to articles 

accompanied by bar graphs (McCable & Castel, 2008). Even irrelevant neuroscience information 

may influence how people judge scientific information: people judged study descriptions 

containing irrelevant neuroscience information as more satisfying than explanations without 

such data (Weisberg, Keil, Goodstein, Rawson & Gray, 2008). One study even found that the 

effects of brain images on evaluations of scientific reports was moderated by the way those 

images were presented, with three-dimensional pictures of neuroimaging results producing 

more positive evaluations (Keeher, Mayberry, & Fischer, 2011). These data lend support to the 

notion that part of the fascination with neuroscience research lies in the persuasive power of 

the actual brain images themselves, which provides a seemingly physical basis for abstract 

processes, appeals to people’s affinity for reductionistic explanations of complex phenomena, 

or at least piques a fascination with the idea of insight into the human brain (Beck, 2010).  

Some scientists have questioned the idea that people are especially compelled by brain images, 

calling this is a “persistent meme” without empirical support (Michael, Newman, Vuorre, 

Cumming & Garry, 2013). One study failed to replicate the earlier findings in this regard, finding 

no general evidence of a neuroimage bias in people’s evaluation of scientific reports. Yet this 

same study noted that when laypeople are exposed to multiple sources of data (e.g., when 

directly comparing neuroimages to other depictions of data), a limited neuroimage bias was 

observed (Schweitzer, Baker, & Risko, 2013). One possibility is that between 2008, when the 

original neuroimaging bias studies were conducted, and 2013, when these findings were 

questioned, the general public became less influenced by brain images. A more likely 

explanation is supported by a recent set of experiments evaluating whether neuroscience 

information, more broadly construed that just brain images, make explanations of psychological 

phenomena more appealing. This study was done while controlling for participants’ analytical 
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thinking abilities, beliefs on free will, and admiration for science. The researchers found that 

accompanying fMRI pictures had no impact above and beyond the neuroscience text, but that 

people found neuroscience information more alluring than both social science and physical 

science information. People’s analytical thinking did not protect against the neuroscience bias, 

nor did a belief in free will (Fernandez-Duque, Evans, Christian, & Hodges, 2015). Thus, the 

“allure of neuroscience” appears to be conceptual rather than merely pictorial, reflecting lay 

beliefs about the explanatory power of the human brain. In other words, the language and 

imprimatur of neuroscience itself is compelling. 

Harnessing the power of this allure to heighten interest and concern about the effects of child 

poverty is a net positive. But it is not without risks. The general public may assume that 

biological correlates of some behavior demonstrates that the behavior cannot be changed and 

that an individual has some sort of permanent deficit. Such a conclusion would likely be false 

given evidence that the brain is malleable, and there is a good deal of evidence that human 

brains have periods of heightened neuroplasticity. Related to a confidence in all things 

biological is the common misunderstanding that something “biological” is somehow innate and 

not the result of environmental factors, a false conclusion belied by decades of empirical 

studies. In sum, conveying that children in poverty show less activation in a brain region or 

neural system can be extremely compelling to someone with little knowledge neuroscience, 

but also confers some risk of misunderstanding. Brain-based data sounds both definitive and 

scientific, especially because in most cases, presentations to policymakers do not afford the 

time to explain the complicated processes of arriving at these conclusions. For this reason, 

policymakers may construe an fMRI image as a photograph, or akin to an X-ray image. In most 

brief interactions with policymakers, it may not be the best use of time to undertake an 

explanation of the fact that fMRI images are highly processed interactions between radio waves 

and the magnetic properties of hydrogen and deoxygenated hemoglobin. Perhaps ironically, the 

complexity of the neuroscience methods themselves may well lead laypeople to have greater 

confidence in the scientific rigor of the images than in the behavioral phenomena that initially 

motivated the neuroscience study. Thus, while it is useful for the public to be informed about 

ongoing research, this usually requires that complex methods and findings are distilled into a 

simple message; the difficult part is making sure that the simple message communicates what 

can and cannot be concluded from the data. 
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(2) Neural activity might reveal processes underlying disparities not otherwise observable, and that might 

also (hopefully) be responsive to change and generate new or more refined hypotheses.  

Although studies have been successful at documenting the range of negative sequelae 

associated with exposure to poverty in childhood, questions about the specificity and 

distinctiveness of the mental processes affected by these experiences have been elusive. There 

are a number of ways in which brain data might elucidate developmental mechanisms, or at 

least provide a physiological grounding to constrain or refine hypotheses regarding how and why 

economic deprivation affects child development. This is because in vivo human brain-related 

responses can provide a window into potential subcomponents of cognitive functioning, or 

mental processes generally, that may not be observable from overt behavior. This is achieved 

not by focusing only on “where” brain activation differences occur, but “how” the brain appears 

to be processing different kinds of information. 

One education-relevant example is attention, a common but highly complex phenomenon with 

many distinct sub-components. Attention often has the appearance of a unitary system, and it 

is not uncommon to hear children described as having generally good or poor attentional 

functioning. This tendency to generalize about attention may arise because many of the 

behavioral consequences of attention covary and are difficult to discern. However, in the brain, 

attention-related changes in neuronal activity are observed in widespread structures, 

suggesting that attention results from subcomponents corresponding to distinct biological 

mechanisms (Luo & Maunsell, 2019). It is possible that exposure to childhood poverty affects 

some particular neural systems, or that some of these systems might be most amenable to 

change. If so, knowledge of this processes would allow for more targeted—and perhaps more 

effective—interventions. 

The notion that attention includes distinct components and forms is well established. To 

illustrate, one aspect of attention involves sustaining vigilance over a long time period to 

maintain performance across a task. Children need attentional vigilance to pay attention over 

the course of a lesson or class, during a story or presentation, or while reading. This is 

essentially preventing the mind (or eyes) from wandering and staying engaged for a set period 

of time. A different aspect of attention involves switching engagement, such as changing from 

one activity to another, or attending to what a teacher is doing in front of a classroom while 

also attending to the materials on one’s own desk. Working on an assignment while also 

monitoring the time left to complete the assignment is also example of this type of attention. 
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Yet another aspect of attention involves selecting what in the environment is relevant and 

important, and dismissing irrelevant information so that cognitive resources are deployed to 

important stimuli. In this regard attention can be more of less selective. Further, attention is 

also subdivided according to what caused it to be deployed: physical events in the environment 

(such as verbal instructions or a loud noise) versus internal factors under voluntary control 

versus lingering effects of what someone has recently learned or experienced (Maunsell, 2015). 

And finally, attention can be still further subdivided into whether it is overt attention 

(associated with detectable behavior) or covert attention (when attention changes with no 

outward manifestation). This range of examples is meant only to highlight the many ways in 

which aspects of attention can span timescales, functions, and goals that are not easily 

separated through behavioral measures (Fortenbaugh, DeGutis, & Esterman, 2017).  

Similar to attention, cognitive functions such as memory also have subcomponents that might 

be selectively impaired or remediated. It is now recognized that different components of 

memory depend on separate brain structures. For example, behavioral data could not reveal 

that separate processes underlie the abilities to recall something directly versus recognizing 

something as seeming familiar (Henson, 2005). Different sub-skills necessary for effective 

reading are associated with activation in separate brain regions (Welcome & Joanisse, 2012). 

And generally, in most behavioral tasks, it is difficult to manipulate or measure a component 

of a participant’s attention without also capturing other cognitive processes, such as reward 

expectation, motor preparation, or working memory.  

Besides specific skills relevant to children’s healthy development, functional neuroimaging has 

potential to reveal the general processes through which early adverse experiences might affect 

children’s learning (Smith & Pollak, In press). By indexing fluctuations of neural activity, 

neuroimaging allows for an examination of the processes through which children acquire new 

information or skills rather than a focus solely on the outcome of learning (Karuza, Emberson 

& Aslin, 2014). As with attention, memory, and reading, learning is often referred to as a single 

process, but the concept subsumes many different operations and neural processes. Thus, there 

might be multiple neural and psychological processes that are differentially affected by the 

adversity associated with poverty. As just a few of many possibilities, there appear to be 

distinct and separable neural processes for acquiring new information as compared to using 

that information (McNealy et al., 2006), making  predictions based upon learned information 
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(Waelti, Dickinson & Schultz, 2001), and learning the cause of an outcome (Gerschman & Niv, 

2010).  

There are likely changes in neural activity before there can be behavioral evidence of learning, 

presumably during initial exposure to stimuli, before corresponding behavioral changes are 

evident. Thus, based upon overt behavior alone, it is difficult to differentiate participants who 

can learn, but do so more slowly versus those who experience difficulties at the earliest stages 

of learning. Indeed, the time course of learning is a reliable and important individual difference 

(Turk-Browne, Scholl, Johnson, & Chun, 2010), and one that might be especially important in 

designing anti-poverty early childhood education programs. For example, some children might 

do well earlier in the learning process and then poorly later (something akin to fatigue), 

whereas other may have poor performance early on and see their performance improve later 

in the learning process (akin to needing a “warm-up”). Indeed, the time course of learning, and 

the trajectory of learning during a task has emerged as an important variable in accounting for 

social and educational difficulties in children exposed to very high levels of adversity and stress 

(Hanson et al., 2017; Harms et al., 2018). These are insights that cannot be observed without 

methods that allow analyses of how children continue to process information after they are 

exposed to it (Karuza, Emberson & Aslin, 2014).  

Our point here is not that brain measures are an ideal or even the best possible research 

approaches. They are among many tools and have their limitations. There are many examples 

of cases where brain activity is uninformative about the similarity of psychological tasks. For 

example, it is always possible that two tasks might involve the same brain regions but use 

different populations of neurons or different patterns of connectivity between 

regions. Conversely, two tasks might involve different regions but involve the same type of 

computation. And observed brain activation may not be essential for a given task at all. But 

overall, behavior alone might not have the specificity needed to effectively tailor interventions 

for at-risk children because many different theories about interactions between brain processes 

rely on similar behavioral predictions (White & Poldrack, 2013). For these reasons, insights into 

neural processes holds promise to help us understand questions such as when in development 

children are most vulnerable, when interventions may effect maximal change, which processes 

are amenable to remediation, and how much interventions are needed to effect change. 

 



 

 16 

(3) Brain physiology may predict behavior better than available behavioral measures  

Functional MRI is usually used in clinical research to show differences between groups. But 

patterns of brain activity can prospectively predict important behavioral outcomes across a 

range of domains, with increasing evidence that neuroimaging data (and potentially other brain 

physiology measures) serves as a better predictor of future behavior than traditional behavioral 

measures such as self-reports, clinical rating scales, or scores on educational or 

neuropsychological tests (Gabrieli, Ghosh, & Whitfield-Gabrieli, 2014). Therefore, there is good 

reason to suggest that future studies might leverage neuromarkers for individualized predictions 

of educational or health outcomes for children living in poverty. Such data could be used to 

develop novel intervention strategies, or perhaps individually optimize the type of timing of 

educational and clinical practices for children most susceptible to poor outcomes.  

There are three different ways that prediction can be useful for studies of child poverty. The 

first is the approach most often used in research. That is, prediction is used simply to refer to 

correlation between two contemporaneous values, such as a score on some task (such as a 

measure of impulsivity) being associated with some individual difference variable (such as 

regional brain activation). This type of study is useful in uncovering mechanisms underlying 

maladaptive behaviors. But that is not our primary focus here. 

Prediction can also refer to within-sample changes over time. For example, task performance 

when a cohort is aged 5 years predicting an outcome when that cohort is aged 10 years. This is 

a very different kind of analysis from the first, and more common, use of prediction because 

significant group differences (detected via t tests) are more likely to occur when there is high 

within-group homogeneity. In contrast, factors associated with the likelihood of predicting 

future outcomes harness heterogeneity within a sample. Indeed, variables that significantly 

differentiate between groups are often weak predictors of future behavior (Lo, Chernoff, 

Zheng, & Lo, 2015). To explore the utility of this predictive approach, Jollans & Whelan (2016) 

reviewed studies that used neuroimaging measures to predict treatment response and disease 

outcomes in a range of psychiatric and neurological illnesses. They found that many of the 

studies were able to predict behavioral outcomes, with neuroimaging data often augmenting 

the prediction compared to clinical or psychometric data alone. Based upon their meta-analytic 

review, they report that brain measures explain a significant amount of variance where clinical 

and behavioral variables fail to do so, with brain measures accounting for up to 40% of the 

variance in clinical outcomes. Moreover, in a number of studies that Jollans & Whelan reviewed, 
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it was only the neuroimaging variables that successfully predicted clinical outcomes. In this 

regard, although measures of brain physiology may be expensive or difficult to collect, the 

benefit may exceed the cost of unsuccessful interventions and educational failure for children. 

A third way that neuroimaging data can be used holds tremendous promise for policy and 

intervention development. This approach involves predicting outcomes for new individuals 

based upon previously collected data from other individuals. In this case, prediction refers to 

a generalizable model; a study with a sample that is used to predict the behavior of individuals 

who were not part of that original sample (Berkman & Falk, 2013). In this manner, a relatively 

small (easily collected, less expensive) sample is used to make predictions or treatment 

decisions for a larger population (Falk et al., 2012). This may represent a powerful and feasible 

way to evaluate prevention and intervention programs for children in poverty. 

Below we provide just a few illustrative examples of how neuroimaging has been used to make 

educationally or clinically useful predictions. We draw these samples from a range of different 

domains that are relevant to poverty studies. 

Prediction of Reading Development. Neuroimaging measures have been shown to enhance and 

even outperform traditional behavioral measures in forecasting children’s reading abilities. In 

studies such as these, children are identified by their teachers as having reading problems and 

then evaluated with behavioral tests of reading and reading-related skills as well as fMRI tasks. 

One longitudinal study examined how the behavioral measures, fMRI activation for a word-

rhyming task, and DTI (diffusion tensor imaging) indices of white matter organization predicted 

reading difficulties three grade years ahead (Hoeft et al., 2011). This study reported that none 

of the behavioral measures correlated with future reading gains, but the brain measures did. 

High levels of activation in the right prefrontal cortex and white matter organization of the 

right superior longitudinal fasciculus predicted, with 72% accuracy, whether children’s reading 

problems persisted. In another longitudinal study, 9-15 year old children were initially assessed 

for reading skill and performed an fMRI rhyming judgment task. The patterns of brain activation 

in the fMRI task predicted the type of difficulties that children encountered in their reading six 

years later. Increased activity relative to peers in neural circuits associated with phonological 

recoding (i.e., inferior frontal gyrus and basal ganglia) predicted which children would show 

greater gains in reading fluency among the younger children, whereas increased activity 

relative to peers in orthographic processing circuits (i.e., fusiform gyrus) was predictive of 
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smaller gains in fluency for older children (McNorgan et al., 2011). The results suggest that 

younger children who are more sensitive to phonological word characteristics make greater 

reading proficiency gains, whereas older children who focus more on whole-word orthographic 

representations make smaller proficiency gains. A third example is a study involving 

kindergarteners who were not yet reading. They were administered a combination of behavioral 

measures, event-related potentials (ERPs), and fMRI responses to presentations of printed 

letters; these measures, in combination, explained 88% of the variance in reading ability when 

those children reached second grade (Bach et al., 2013). These data suggest that neuromarkers 

can be used to identify children who will encounter difficulties learning to read even before 

reading instruction begins in school. As Gabrieli et al. (2014) point out, this is important because 

current reading interventions are most effective in young, beginning readers, and effective 

intervention prior to reading failure may not only be more effective but also spare children the 

sense of failure that often accompanies early struggles in reading. Using fMRI or ERPs in a 

predictive manner could also help tailor the kinds of educational interventions that may be 

most beneficial for individual children and are certainly amenable to cost-benefit types of 

analyses. 

Prediction of Substance Abuse. In a longitudinal study, 12- to 14-year-olds with little or no 

history of substance abuse performed a go/no-go task of response inhibition while undergoing 

fMRI (Norman et al., 2011). About 4 years later, those fMRI results accurately predicted those 

adolescents who did or did not transition to heavy use of alcohol. Reductions in activation 

within the prefrontal and anterior cingulate cortices predicted adolescents who later 

transitioned to heavy alcohol use relative to those who did not. A separate study reported highly 

convergent results. Among adolescents 16–19 years of age with an ongoing history of substance 

use disorders, those who exhibited less prefrontal and greater parietal activation on a similar 

go/no-go the task had higher levels of substance use 18 months after scanning (Mahmood et 

al., 2013).  

Prediction of Depression. fMRI data has successfully predicted disease course in patients with 

depression. One study reported that clinical variables, such as the number of previous 

depressive episodes, depression symptom severity, and time in remission, did not alone predict 

whether patients remained in remission after 14 months. However, outcome predictions 

reached 75% accuracy on the basis of fMRI data gathered during a self-versus other-blaming 

task (Lythe, Moll, Gethin, Workman, Green, & Ralph, 2015). Another study found that activation 
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in the subgenual anterior cingulate cortex during an emotion information processing task 

measured prior to treatment predicted which depressed patients had the most improvement 

following a cognitive behavioral treatment (Siegle, Thompson, Collier, Berman, Feldmiller, 

Thase, & Friedman, 2012). A similar study found the same pattern of results-- and it is 

noteworthy that only the brain physiology variables successfully predicted clinical outcomes 

(Gong, Wu, Scarpazza, Lui, Jia, Marquand, & Mechelli, 2011). Thus, brain physiology appears 

to provide a clinically applicable way of assessing neural systems associated with treatment 

response. 

Prediction of Healthy Eating. Healthy eating to avoid or reduce obesity is also a major public 

health concern. Neuroimaging studies have reported that fMRI activations in response to food-

related pictures forecast future changes in body mass index (BMI). One study examined the 

relation between baseline fMRI activations and weight gain over the following year in 

adolescent females ranging from lean to obese using an attention task involving food and 

neutral stimuli. fMRI measures of activation in brain regions including the anterior 

insula/frontal operculum, lateral orbitofrontal cortex (OFC), ventrolateral prefrontal cortex 

(vlPFC), and superior parietal lobe correlated with future increases in BMI 1-year later (Yokum 

et al., 2011). These are networks tied to attention and reward processing. None of the 

behavioral measures predicted future weight gain. Many people who engage in weight loss 

interventions fail to reach targeted goals or maintain their efforts. A recent study used 

neuroimaging to predict success in healthy eating based upon the idea of identifying individuals 

most amenable to behavioral change. fMRI data was prospectively collected prior to a 

behavioral weight loss intervention involving overweight adults. Machine learning and 

functional brain networks predicted which adults would continue to follow through with the 

intervention 18 months later with 95% accuracy (Mokhtari, Rejeski, Zhu, Wu, Simpson, 

Burdette, & Laurienti, 2018). Connectivity patterns that contributed to the prediction consisted 

of brain networks that are associated with self-regulation, body awareness, and the sensory 

features of food.  

In sum, the potential to tailor personalized treatment plans or early interventions, to identify 

individuals in need of most intensive interventions, or to identify larger populations of 

individuals who can benefit from a treatment based upon smaller samples could have 

considerable implications for the economic cost of health care and educational practice. Of 

course, it is reasonable to consider whether using brain measures as part of educational 
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planning is practical given the costs and need for children to visit imaging facilities. As noted 

above, cost-benefit analyses would help determine whether brain physiology techniques are 

approipriate, justified, and feasible. Other less costly indices of brain function, such as ERPs, 

may also be useful in this regard. ERPs are far less costly and the equipment is relatively easily 

transported to school and community settings. But given the long-range costs of educational 

deficits, and the non-negligible costs of traditional psychological and educational assessments 

and of interventiosn with modest efficacies, such an option may pass a cost-benefit test, 

especially for severely delayed learners.  

(4) Neural measures may allow us to evaluate interventions and policies earlier (including “shadow 

effects”). 

When a new program or intervention is introduced, even with an experimental design, the 

evaluation of that program is usually focused on relatively short term outcomes. Rarely are 

studies designed (or funded) to measure long term outcomes such as future earnings of children 

enrolled in a preschool program. Researchers and funders are rarely willing to wait for a decade 

or more to measure potential outcomes. Today, it is possible to use administrative records 

(along with consent agreements) to gather such data. But still, researchers must wait a long 

time to access such data, and participant attrition may reduce reliability. One example of the 

importance of measuring longer terms outcomes associated with an intervention (also called 

shadow effects) is  the Moving to Opportunity (MTO) study. MTO is an experimental program 

that offered some families the opportunity to move out of high poverty neighborhoods (Chetty 

et al., 2016). Earlier research had found that this housing experiment had only small effects on 

children, and it appeared that these effects faded over time. But more recent examination of 

the data revealed shadow effects that were not apparent until the children were older. Among 

the positive effects associated with childrens’ families moving to low poverty neighborhoods 

before the children were 13 years of age included an increased probability of attending college 

and higher earnings during their mid-20s. This result did not hold for children who moved when 

they were older. The study used tax data to discover the longer term results. For this reason, 

these effects of the intervention could not be seen when children were young, but only after 

they had entered the workforce. It is possible that the use of neuroscience approaches might 

allow us to capture early signs of these long run outcomes, and thereby identify programs that 

are likely to be effective.  
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(5) Bootstrapping Extant Neuroscience Knowledge 

 We currently understand little about how and why poverty can have such devastating 

effects on children’s healthy development. But the neuroscience literature provides some 

insight into factors that may serve as causal mechanisms linking poverty to poor health and 

educational outcomes. Therefore, we can draw from literatures on the effects of extreme stress 

and adversity, ranging from exposure to toxins to nutritional restriction to housing and food 

instability to limited family resources to dangerous neighborhoods to parental stress. These 

studies of various forms of stress can provide insight into the mechanisms that may affect 

children living in poverty.  

There are consistent relationships between high levels of stress exposure and disruption of the 

hypothalamic-pituitary-adrenal (HPA) axis (Koss & Gunnar, 2017; Strüber, Strüber, & Roth, 

2014), autonomic nervous system (Esposito, Koss, Donzella, & Gunnar, 2016), and immune 

system functioning (Danese & Lewis, 2017; Danese -cite this issue; Miller & Chen, 2010; Müller 

et al., 2019), as well as epigenetic changes, especially in the glucocorticoid receptor gene 

(Papale, Seltzer, Madrid, Pollak, & Alisch, 2018; Romens & Pollak, 2015; Turecki & Meaney, 

2016; Tyrka, Price, Marsit, Walters, & Carpenter, 2012). These are systems that have 

implications for issues of behavioral regulation, academic performance, and health. A recent, 

and important, longitudinal study demonstrates that such effects on the HPA system remain 

open to recalibration in humans if environmental factors improve (Gunnar, DePasquale, Reid, 

& Donzella, 2019). This suggests that anti-poverty intervention efforts should include a focus 

on the prepubertal and peripubertal period in order to maximize their impact on recalibrating 

systems like the HPA axis. 

In addition, physiological alterations in the stress system appear to be linked to functional and 

structural changes in a number of brain regions  (Fan et al., 2014; Gorka et al., 2014; Palacios-

Barrios & Hanson, 2019; Tottenham & Sheridan, 2009). To illustrate, chronic stress is associated 

with global changes in dendritic branching and synaptic plasticity throughout the prefrontal 

cortex (PFC), amygdala, and hippocampus—circuitry that has been implicated in alterations in 

learning, memory, and stress responsivity (Hostinar & Gunnar, 2013; Ironside, Kumar, Kang, & 

Pizzagalli, 2018; McEwen & McEwen, 2017; Novick et al., 2018 ). All of these domains have 

arisen in descriptions of outcomes associated with child poverty. Recent studies suggest that 

early adversity may lead to altered connectivity between the amygdala and PFC (Gee et al., 

2013; VanTieghem & Tottenham, 2018). Comparable alterations in development of the 
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hippocampus are observed in children who experienced a variety of experiences including 

abuse, neglect, poverty, and general chronic stress (Gorka, Hanson, Radtke, & Hariri, 2014; 

Hanson, Nacewicz, et al., 2015; Teicher et al., 2018). These stress-related changes all appear 

to be similarly, and at least partially, mediated by corticotropin-releasing hormone (CRH) and 

glucocorticoids, key regulators of the HPA axis (Koss & Gunnar, 2017; McEwen & Morrison, 2013; 

Vazquez et al., 2006; Wang et al., 2011).  

There are some other promising lines of research on the neurobiology of stress that are highly 

relevant to the experiences of children living in poverty. We highlight some of these briefly 

below. 

Perceptions of Insecurity. Children’s perceptions of scarcity or insecurity associated with family 

poverty might influence their neurobiology (Brosschot, Verkuil, & Thayer, 2017; Lazarus & 

Folkman, 1984; B. S. McEwen, 2019; Peters, McEwen, & Friston, 2017; Sapolsky, 2015). This 

type of effect depends upon how organisms perceive the controllability and predictability of 

stressors (Bollini, Walker, Hamann, & Kestler, 2004; Muller, 2012). In humans, individual 

differences in perceptions of control have been linked to differential cortisol responses to acute 

laboratory stress, differences in brain volume, and differences in brain reactivity to stress in 

regions including the hippocampus, amygdala, and prefrontal cortex (Harnett et al., 2015; 

Hashimoto et al., 2015). This may be a critical factor in cases where housing and food are 

insecure. 

Yet, it is not simply the case that how a potential stressor is perceived attenuates or 

exacerbates physiological responses. Rather, individual’s perceptions of their own 

circumstances trigger different patterns of responses across neural systems. As an illustrative 

example, if individuals construe their personal resources as sufficient to outweigh a situational 

demand, they evince increased sympathetic cardiac activation, accompanied by increased 

cardiac output and decreased vascular resistance. In contrast, if individuals perceive that same 

situation as outweighing their personal resources, their increased sympathetic cardiac activity 

is accompanied by decreased cardiac efficiency, including changes in cardiac output and 

increased vascular resistance (Mendes & Park, 2014; Sammy et al., 2017). These cardiovascular 

patterns have been linked to distinct patterns of HPA activation (Seery, 2011). This basic 

science has clear applicability to individuals developing within under-resourced environments. 

Other factors that influence how individuals interpret potential stressors include whether 
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individuals perceive themselves to be in a safe or dangerous environment (Blascovich, 2008; 

Jamieson, Hangen, Lee, & Yeager, 2018), which may account for the effects of children living 

in dangerous or loud neighborhoods.  

Intensity and Cumulative Stress. Humans also evince increases in sympathetic noradrenergic, 

adrenomedullary, and HPA responses for a range of stressors that vary according to the intensity 

of the stressor (Ouellet-Morin et al., 2019), and stressors perceived as more intense are 

associated with larger cortisol responses (Skoluda et al., 2015). For this reason, it is important 

to remember that the context of poverty does not involve any single stressor for children, but 

a wide net of different sources of stress over protracted periods of time. One study reported 

that children with high levels of chronic life stress had smaller amygdala and hippocampal 

volumes than children exposed to less intense levels of early adversity (Hanson, Nacewicz, et 

al., 2015). Germaine to this this discussion, it is noteworthy that children with reports of child 

abuse, neglect, and those living in poverty all showed similar effects on brain structure, 

suggesting a common stress-related mechanism across these early life experiences. Yet another 

study found that individuals who experienced high levels of adversity when they were children 

demonstrated altered activation in circuits involved in risk-taking and decision-making when 

they were young adults (Birn et al., 2017). These effects were not explained by the stress in 

the participant’s current adult lives, but only their childhood experiences.  

Environmental Instability. Recent research also suggests that predictability in the environment 

shapes children’s cognitive outcomes (Davis et al., 2017; Also Davis - this issue). Longitudinal 

research finds that unpredictability, including factors highly relevant to poverty such as 

frequent changes in maternal employment, residence, and cohabitation, was associated with 

increased externalizing behaviors in adolescence (Doom, Vanzomeren-Dohm, & Simpson, 2016). 

Similarly, research in rodents indicates that these observed effects are a result of altered 

functioning in prefrontal-hippocampal-amygdala circuits, finding that lack of stability in the 

early environment is associated with altered connectivity between the medial prefrontal cortex 

and amygdala (Bolton et al., 2018), as well as decreased dendritic arborization in the 

hippocampus (Molet et al., 2016). Together, this body of work is consistent with the view that 

better assessment of variation in the predictability, stability, and/or degree of contingent 

responding of adult caregivers to the needs of the developing child will provide insight into 

developmental alterations in prefrontal cortical and subcortical stress response circuits (for 

discussion, see Smith and Pollak, In press).  
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In sum, there is not likely to be a brain signature specific to poverty. For one, the experience 

of poverty involves many different kinds of experiences converging on children and their 

families over time. But also, the brain is unlikely to respond in distinct ways to the variety of 

adversities that humans might encounter. For these reasons, it will be productive to apply and 

built from the extant body of knowledge about the neurobiology of stress to further our 

understanding of the effects of family poverty on children’s development.  

Conclusion 

Child poverty represents a worldwide humanitarian, public health, and pragmatic problem. 

Poverty affects the lives of millions of children and needs more progress and new ideas based 

upon a variety of scientific evidence. From a humanitarian perspective, poverty represents not 

merely low income, but a deprivation of children’s human capabilities (Sen, 1999). From an 

economic perspective, the cost of poverty is high. For example, problems associated with 

poverty, including child maltreatment, crime and incarceration, reduced earnings, health 

problems, and child homelessness cost the United States $1.03 trillion dollars in 2016 

(McLaughlin & Rank, 2018). The number represented 28% of the entire federal budget that year. 

But the impact of most early childhood anti-poverty programs is quite modest (Duncan & 

Magnuson, 2011). We know that impoverished children are likely to grow up with fewer skills 

to contribute to society because of educational under-attainment and are disproportionately 

likely to experience more serious health problems. These costs are borne by the children 

themselves, but by the wider society as well.  

For these reasons, neuroscientific approaches may be successfully married with social science 

approaches to generate new clues about possible prevention and intervention policies and 

programs. It is not that there will be a clear brain signal that is diagnostic of poverty, or that 

any single neural process affected by poverty will be a direct cause of poor outcomes among 

impoverished children. Poverty represents many different kinds of social interactions, 

challenges, and stressors over the course of a child’s development. But developmental 

neuroscience does have a rich corpus of data that can help.  

At the same time, the use of neuroscience to better understand poverty must be undertaken in 

a way that is mindful of three important issues. The first is the fact that most neuroscience 

techniques, such as fMRI and ERPs, are well suited to questions with few variables that can be 

examined with a limited range of response options. But the effects of poverty likely involve 
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very complex problems with multiple variables. The second is that the brain is unlikely to be 

wired in a way that specifically responds to different aspects of the wide variety of possible 

human experiences. Therefore, brain effects are likely not going to be specific to poverty, per 

se, but to generalize broadly to the effects of chronic adversity on child development. 

The third is that biological correlates of poverty may represent powerful opportunities for 

policy, but the biology-policy links will be non-obvious or direct. In general, policymakers care 

about broad social metrics such as improving health or mortality rates, increasing high school 

graduation rates, or positive employment outcomes. Developmental psychologists study 

constructs such as executive functions, self-regulation, and phonemic awareness. And 

neuroscientists study phenomena such as brain connectivity, hippocampal volume, hormone 

fluctuations, and synapses. Simple solutions should not be expected, and simple causal 

explanations perhaps viewed with skepticism. But with thoughtful, integrative and cross-

disciplinary work, linking these levels of analyses shows great promise for targeting and refining 

new and effective interventions, programs, and policies. We place great hope on using new 

ways to combine scientific tools and multi-disciplinary insights to ensure equity in children's 

health, success, and well‐being. 
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Figure 1. Among all children under 18 years in the U.S., 41 percent are low-income children 

and 19 percent—approximately one in five—are poor. This means that children are 

overrepresented among our nation’s poor; they represent 23 percent of the population but 

comprise 32 percent of all people in poverty. Many more children live in families with 

incomes just above the poverty threshold. The percentage of low-income children under age 

18 years surpasses the percentage of low-income adults. 
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Figure 2. Brain regions that appear to consistently show negative associations between child 

poverty and gray matter development.  
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Figure 3. Differences in trajectory of brain growth among infants from low (blue), middle 

(red) and high (green) income families. There is no statistical difference between the growth 

rates of those from middle and high income families. Reprinted from: Hanson et al. (2013). 
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Figure 4. Data from Hair et al. (2015) is used to show the relationships between low family 

income, children’s brain growth, and children’s subsequent performance on Math 

Computation and Reading Comprehension achievement tests. 
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Figure 5. Volumetric comparisons for the left amygdala (panel A) and hippocampus (Left 

hippocampus shown in Panel B; Right hippocampus in Panel C). For each graph, standardized 

residuals controlling for total gray matter, pubertal stage, and sex are shown on the vertical 

axis, while group is shown on the horizontal axis. In the bottom corner of the figure are 

example hand-tracings of the amygdala (outlined in red) and hippocampus (outlined in blue). 

Reprinted from Hanson et al. (2015) with permission. 
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