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NON-TECHNICAL SUMMARY  

Multidimensional poverty measures based on counts of dimensions in which individuals are deprived have 

gained prominence in recent decades. Poverty measures of this sort are currently used by many governments 

and international organisations to monitor poverty trends in developed and developing countries. 

Defining poverty in this way is a very simple and intuitive approach. Yet when constructing counting poverty 

measures analysts face multiple methodological choices that can influence poverty levels and comparisons. 

These choices include the function linking individuals’ level of deprivation with the number of poverty 

dimensions, the threshold specifying the minimum number of dimensions individuals need to be deprived to be 

deemed as multidimensionally poor, and the weights assigned to each of the wellbeing indicators. 

While the sensitivity of poverty estimates to these choices is generally acknowledged, the common approach 

involves evaluating the sensitivity of poverty orderings considering a limited and usually arbitrarily set of 

alternative individual poverty functions, cut-offs values and dimensional weights. Although easy to implement, 

this approach is inferior to classical approaches used in the income poverty literature. 

This paper proposes new dominance criteria for multidimensional counting poverty measures. We derived 

conditions that are both necessary and sufficient to guarantee the robustness of multidimensional poverty 

orderings to the choice of the poverty index, the multidimensional poverty cut-off, and the vector of 

dimensional weights used to construct counting poverty scores. The new conditions are easy to test empirically, 

and the new criteria apply to a broad class of contemporary counting poverty measures. 

We also derived a set of useful necessary conditions that allow the analyst to rule out the robustness of poverty 

comparisons to changes in poverty functions, identification cut-offs, and dimensional weights. These conditions 

are easy to implement, as they only require comparing the proportion of people deprived in each of the 

dimensions and the proportion deprived in all dimensions. 

We illustrate our method through an empirical assessment of poverty trends in Australia in the 2000s using a 

framework based on three indicators of economic deprivation. Our findings indicate that poverty comparisons 

based on counting measures can be highly sensitive to changes in dimensional weights, cut-offs and poverty 

functions. Given the growing prominence of this type of measures in social policy and academic debates, it is 

crucial to have dominance conditions that allow the systematic evaluation of poverty orderings to changes in 

those methodological choices. This papers constitutes as important step in this direction. 
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Abstract 

Counting poverty measures have gained prominence in the analysis of multidimensional 

poverty in recent decades. However, poverty orderings based on these measures typically 

depend on methodological choices regarding poverty indices, poverty cut-offs, and dimensional 

weights whose impact on poverty rankings is often not well understood.  In this paper we 

propose new dominance conditions that allow the analyst to evaluate the robustness of poverty 

comparisons to those choices. These conditions provide an approach to the evaluation of the 

sensitivity of poverty orderings superior to the common approach of considering a restricted 

and arbitrary set of indices, cut-offs, and weights. The new criteria apply to a broad class of 

counting poverty measures widely used in empirical analysis including the class of measures 

proposed by Alkire and Foster (2011), the class proposed by Chakravarty and D’Ambrosio 

(2006), and combinations thereof. We illustrate these methods with an application to 

multidimensional poverty in Australia in the 2000s. 

 

Keywords: multidimensional poverty; counting measures; dominance conditions; Australia 



1 Introduction

Multidimensional counting poverty measures are widely used by academics and
policymakers around the world. Since the works of Atkinson (2003), Chakravarty
and D’Ambrosio (2006), and Alkire and Foster (2011), many governments and in-
ternational institutions have adopted counting poverty measures in order to mon-
itor poverty trends in developed and developing countries alike. Recent exam-
ples include World Bank (2016), the “Multidimensional Poverty Index" used by
UNDP in its Human Development Reports since UNDP (2010), and the measures
of people at risk of poverty and social exclusion currently used by Eurostat to as-
sess living conditions in Europe (Eurostat, 2014). Moreover, the governments of
Bhutan, Brazil, China, Colombia, El Salvador, Honduras, Malaysia, and Mexico,
have already incorporated this type of measures into their set of national statis-
tics.1 Meanwhile, other countries are expressing interest toward future adoption.2

Poverty evaluations based on those measures depend on a range of arbitrary
choices that are likely to influence poverty comparisons. These choices include the
specific properties of the poverty function, the rule employed to identify the mul-
tidimensionally poor, and the weights assigned to each of the different dimensions
or indicators. While the sensitivity of poverty estimates to these choices is gener-
ally acknowledged, the common approach in the literature proceeds by evaluating
the sensitivity of poverty orderings considering a limited and usually arbitrar-
ily chosen set of alternative indices, weights, and cut-offs (e.g., see Nusbaumer
et al., 2012; Alkire and Santos, 2014). Although easy to implement, this type of
approach is inferior to the stochastic dominance approach commonly used in the
income poverty literature, which reduces the problem of testing the robustness of
alternative choices over a large, usually continuous domain, to a smaller set of fi-
nite distributional comparisons. Notwithstanding their widespread consideration
in distributional analysis, including monetary poverty research, the use of dom-
inance conditions for evaluating the robustness of counting poverty orderings to
alternative methodological choices is still rare. However, the soaring popularity
of counting poverty measures, together with their reliance on a range of arbitrary
methodological choices, justifies the development of testable conditions for gauging
the robustness of poverty comparisons based on the counting approach.

Existing proposals have succeeded in providing robustness tests based on chang-
ing a handful of key sets of parametric or functional choices while keeping the
others constant. For example, in the case of counting poverty measures, Lasso
de la Vega (2010) showed how to test for the robustness of comparisons to alterna-

1See:www.ophi.org.uk/policy/national − policy/.
2See:www.ophi.org.uk/government−of−spain−calls−for−the−adoption−of−a−multidimensional−

poverty − index − post − 2015/.
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tive poverty identification cut-offs and individual poverty functions, while keeping
several other parameters constant (poverty lines and dimensional weights). More
recently, Yalonetzky (2014) proposed a robustness test for ordinal variables, alter-
native functional forms, deprivation lines and weights, but only useful for extreme
poverty identification approaches (union and intersection). Likewise, Permanyer
and Hussain (2017) proposed a highly flexible robustness test based on first-order
dominance conditions applied to multiple binary variables, but working under a
union approach to poverty identification. In this paper, we propose complementary
dominance conditions whose fulfillment guarantees the robustness of comparisons
to broad alternative combinations of functional forms (for individual poverty mea-
sures), deprivation weights and counting poverty identification criteria.

A similar concern prevails among users of composite indices regarding the ro-
bustness of comparisons to alternative choices of weights used to aggregate the
wellbeing indicators. The recent contributions of Permanyer (2011) and Foster
et al. (2013) provide innovative methods to gauge the degree of robustness of
both pairwise comparisons and country rankings to alternative choices of weights.
While these methods are well suited to study comparisons using multidimensional
measures of welfare, they have not yet been adapted to the context of multidimen-
sional poverty measures in which additional complicating measurement choices
play key roles, e.g. deprivation lines and multidimensional poverty cut-offs which
help identify the poor, and poverty intensity functions. Moreover, these methods
provide measures of comparisons’ degree of robustness to a subset of weights de-
fined around a pre-specified vector of weights (e.g. equal weights). Finally, while
these methods are useful to explore robustness across a subset of weights, they
do not solve the key computational problem addressed by stochastic dominance
techniques mentioned above; namely, how to transform a robustness test over a
large continuous domain into a smaller set of finite distributional comparisons.
For these stated reasons, we do not pursue these robustness methods in this pa-
per, instead favouring a stochastic dominance approach.

Counting poverty measures focusing on the number of dimensions in which
individuals experience deprivation have a long tradition in the poverty literature.3

These measures share key features with measures based on the social welfare and
axiomatic approaches to multidimensional deprivation that can be discussed in a
common framework. Indeed, as shown by Atkinson (2003), dominance conditions
in these approaches necessarily involve the comparison of the groups deprived
in any and all dimensions. In a very influential paper, Alkire and Foster (2011)

3As cited in Atkinson (2003), early applications of counting measures include the works by
Townsend (1979) for the United Kingdom, Erikson (1993) for Sweden, and Callan et al. (1999)
for Ireland. More recent applications and methodological innovations include Chakravarty and
D’Ambrosio (2006), Bossert et al. (2009), Alkire and Foster (2011), and Permanyer (2014).
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proposed a new method that combines the counting and axiomatic approaches to
the measurement of multidimensional deprivation. In this approach, the poor are
identified using a weighted counting measure and a poverty cut-off representing
the minimum value of this weighted counting measure required to be classified
as poor.4 The deprivations of the poor are then aggregated using a measure of
the Foster–Greer–Thobercke family of poverty measures (Foster et al., 1984). The
resulting poverty measures satisfy standard axioms of multidimensional poverty
measurement often invoked in the literature.5

This paper contributes to the existing literature by proposing new dominance
criteria for multidimensional counting poverty measures. We derive conditions
that are both necessary and sufficient to guarantee the robustness of multidimen-
sional poverty orderings to the choice of the poverty index, the multidimensional
poverty cut-off, and the vector of dimensional weights used to construct counting
poverty scores. The new conditions are easy to test empirically as they involve
the comparison of frequencies of people deprived in different sets of dimensions.
For example, comparing the proportion of people deprived only in electricity in
country A against their equally-deprived counterparts in country B, comparing
the proportion deprived only in electricity and sanitation in A versus B, and so
forth. Importantly, the new criteria apply to a broad class of counting poverty mea-
sures including the classes of measures proposed by Chakravarty and D’Ambrosio
(2006), Alkire and Foster (2011), and combinations thereof; in turn including the
multidimensional headcount and the adjusted headcount ratio indices widely used
in poverty research.

Our results build on the conditions proposed by Lasso de la Vega (2010) to
identify unambiguous rankings for a class of poverty indices and poverty cut-offs.
Our results extend hers in a number of ways. Firstly, while conditions in Lasso
de la Vega (2010) apply only to a particular vector of deprivation weights, our new
conditions guarantee the robustness of counting poverty orderings to changes in
poverty indices and cut-offs for any conceivable vector of dimensional weights. Fur-
thermore we derive a set of useful necessary conditions that allow the analyst to
rule out the robustness of poverty comparisons to changes in poverty functions,
identification cut-offs, and dimensional weights. These conditions require only the
comparison of the proportion of people deprived in each of the dimensions and the
proportion of people deprived in all dimensions. We propose statistical tests for
the new dominance conditions based on the testing framework for pair-wise popu-
lation comparisons proposed by Dardanoni and Forcina (1999) and Hasler (2007).

4When these weights are equal, the poverty cut-off can be interpreted as the minimum number
of deprived dimensions required to be classified as poor.

5Key references in this literature also include Tsui (2002), Bourguignon and Chakravarty
(2003), Duclos et al. (2006), and Permanyer (2014).
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On the whole, we argue that the analytical methods proposed in this paper con-
tribute significantly to the existing toolkit of robustness evaluation techniques for
counting poverty orderings by covering combinations of parametric choices hith-
erto unavailable in the literature. We further discuss the scope and limitations of
our proposal in the following sections.

We illustrate the new dominance conditions with an empirical assessment of
poverty trends in Australia during the years 2002, 2006, 2010, a period which first
saw improved monetary living standards in association with the commodity boom,
followed by some decline in the aftermath of the financial crisis. Multidimensional
poverty in Australia declined between 2002 and 2006, assuming equal weights.
This was followed by an increase in poverty from 2006 to 2010 although poverty
levels by 2010 remained below those in 2002. These results are robust to alterna-
tive poverty indices and poverty cut-offs. However, the new robustness conditions
enable us to conclude that the 2002-2010 and 2006-2010 comparisons are not ro-
bust to changes in weights as the ordering of those years depends on the particular
choice of dimensional weights and poverty cut-offs. By contrast, the reduction in
multidimensional poverty between 2002 and 2006 was fully robust not only to a
very wide range of choices of poverty index and poverty identification cut-offs, but
also to any choice of dimensional weights.

The rest of the paper proceeds as follows. The next section presents the mea-
surement framework and the class of counting poverty measures considered in the
analysis. Key poverty statistics and some notation relevant for the derivation of
the dominance results are also discussed in this section. The third section dis-
cusses the existing dominance conditions and develops the new dominance results
for counting poverty measures. The fourth section briefly explains the statistical
tests. The fifth section provides the empirical illustrations on multidimensional
poverty reduction in Australia. Finally, the paper concludes with some remarks.

2 The Counting Approach to Poverty Measurement

2.1 Measurement Framework

We consider a population with N individuals and D > 1 indicators of wellbeing. Let
X be a matrix of attainments where the typical element xnd denotes the level of
attainment by individual n on dimension d. If xnd < zd, where zd is a deprivation
line for dimension d from a D-dimensional vector of deprivation lines, Z, then we
say that individual n is deprived in indicator d. Let ynd = I(xnd < zd) where I is the
indicator function that takes value 1 if the argument in parenthesis is true, and 0
otherwise. Therefore the matrix Y with dimensions N ×D and typical element ynd
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translates the attainments into an identification of deprivations across dimensions
and individuals. Here we must emphasize that there are different ways of defining
the elements of matrix Y ranging from simple binary comparisons to complex log-
ical operations. For example, ynd could be a binary indicator of access to electricity
where ynd = 1 could denote access and ynd = 0 would mean lack of access. On the
other extreme, ynd could also be a complex binary indicator taking the value of 1
whenever a set of conditions are fulfilled to a partial or full extent. For example,
we could say that ynd = 1 if at least one construction material (e.g. for floor, walls,
roof, etc.) is of substandard quality, otherwise ynd = 0 (i.e. a type of union approach
for ynd). But we could also say that ynd = 1 if every adult in the family is illiterate,
otherwise ynd = 0 (i.e. a type of intersection approach for ynd = 0). Unlike the pro-
posals by Yalonetzky (2014) and Permanyer and Hussain (2017), the dominance
conditions proposed in this paper do not apply directly to the joint distribution of
the variables whose logical combinations lead to matrix Y . Our conditions build
from Y once the rules used to construct the matrix of deprivations are set. There-
fore a change in those rules would require implementing our proposed tests (or
any other tests taking the construction of Y for granted) again. 6

In order to account for the breadth of deprivations, most counting measures
rely on individual deprivation scores defined as a weighted count of deprivations.
Let W ∶= (w1,w2, ...,wD) denote the vector of dimensional weights such that wd ≥
0 ∧ ∑D

d=1wd = 1. The deprivation score for individual n is given by

cn ≡
D

∑
d=1

wdynd,

There is only one vector of possible values of cn for each particular choice of depri-
vation lines and weights. Moreover it is easy to show that the maximum number
of possible values is given by: ∑D

i=0 (Di ) = 2D. The vector of possible values is defined
as: V ∶= (v1, v2, ..., vl), where max l = 2D, vi < vi+j, v1 = 0 and vl = 1. 7

6Another potential complication in the construction of matrices X and Y is that some attain-
ments or deprivations may not always be observable, either directly or indirectly. This will often
depend on the choice and definition of well-being indicator, as well as the degree of complexity of
the decision rules used to define deprivations based on several indicators. For example, if a co-
habiting couple is surveyed too early into their partnership before they have children, one may be
unable to report the health issues affecting the children. Likewise, if one or two household heads
are surveyed too late into their lives, one may be unable to retrieve information about the educa-
tion of children in the household if their children do not live with them anymore already, unless
the heads are asked explicitly about their offspring in retrospect. This is a challenge common to
the literature, e.g. it would affect indices like the UNDP’s MPI (see Alkire and Santos, 2014, table
1). We thank a referee for pointing out this issue.

7As shown by Permanyer (2014, table 1), alternative forms for the deprivation score are possible
when variables are cardinal and not partitioned or dichotomised. However this diversity signifi-
cantly contracts when we work with binary deprivation indicators, as is the case in the counting
framework.
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Following Alkire and Foster (2011) we characterise the set of multidimension-
ally poor with an identification rule ρk(cn) that equals 1 when the individual is
poor and 0 otherwise. The indicator function ρk compares individuals’ cn with a
multidimensional cut-off k ∈ [0,1] ⊂ R+ so that any person n is deemed to be poor if
and only if cn ≥ k. As shown in Lasso de la Vega (2010), the function ρk is the only
identification rule that satisfies the property of poverty consistency which requires
ρk(cn′) = 1 whenever ρk(cn) = 1 and cn ≤ cn′.8

Let P (Y ;W,k) denote a social poverty counting measure depending on the vec-
tor of deprivations, Y , the vector of weights used to construct the scores W , and
the identification rule, and the cut-off k used for the identification rule ρk(cn).
Even though the extent of individual deprivations also depends on the vector of
dimensional poverty lines, Z, we do not include the latter in P () for the sake of no-
tational simplicity. Following Lasso de la Vega (2010), we consider a broad family
of social poverty measures satisfying standard axioms in the literature on poverty
measurement including:

Axiom 1. Focus (FOC): P (Y ;W,k) should not be affected by changes in the depri-
vation score of a non-poor person as long as for this person it is always the case
that: cn < k.

Axiom 2. Monotonicity (MON): P (Y ;W,k) should increase whenever cn increases
and n is poor.

Axiom 3. Symmetry (SYM): P (Y ;W,k) should not be affected by permutations in
the vector C of poverty scores cn, i.e., P (C,ρk) = P (C ′, ρk) where C ′ is any permuta-
tion of C.

Axiom 4. Population-replication invariance (PRI): P (Y ;W,k) = P (YR;W,k) where
YR = (Y,Y, ..., Y ) is any replication of the N rows of the deprivation matrix Y .

Axiom 5. Distribution sensitivity (DS): Let cj > ci and let Y ′ be the vector of depriva-
tions obtained from Y by removing a subset of deprivations from individual j in Y ,
and Y ′′ be the vector obtained from Y by removing the same subset of deprivations
from individual i in Y . Then: P (Y ;W,k) − P (Y ′;W,k) > P (Y ;W,k) − P (Y ′′;W,k).

Note that axiom DS essentially prioritises the reduction of deprivation scores
among those with higher initial deprivation scores, i.e. the poorest among the

8Recently, Permanyer and Riffe (2015) have proposed a broad class of identification rules, which
mostly do not require comparing a weighted count of deprivations against a cut-off (rather these
rules are based on a host of different logical operations). In fact, as the authors show, the count-
ing identification rule introduced by Alkire and Foster (2011) and axiomatically characterised by
Lasso de la Vega (2010) is a special member of the broader class of poverty identification functions.
The dominance conditions proposed in this paper are specifically tailored for identification rules
consistent with the dominance conditions derived by Lasso de la Vega (2010).
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poor. We denote by P1 the class of social poverty counting measures P satisfying
FOC, MON , SYM , and PRI. And let P2 ⊂ P1 denote the class of social poverty
measures satisfying DS in addition to those four axioms. In this paper we propose
dominance conditions for these two classes of poverty measures.

The following poverty statistics are important for the derivation of the dom-
inance conditions. The multidimensional poverty headcount is widely used in
poverty analysis based on counting measures and is given by:

H(Y ;W,k) = 1

N

N

∑
n=1

I(cn ≥ k). (1)

The measure H(Y ;W,k) provides the proportion of people whose poverty score
cn is at least as high as the multidimensional poverty cut-off k. This is a crude
measure of poverty that fails to satisfy the monotonicity axiom as it does not take
into account the depth of poverty. However, as shown in Lasso de la Vega (2010),
even if H(Y ;W,k) does not belong to the classes P1 and P2 of poverty measures, the
orderings based on the H(Y ;W,k) statistic for all k are useful to identify unam-
biguous rankings within the class P1.

We also use the adjusted headcount ratio proposed by Alkire and Foster (2011)
which can be expressed as:

M(Y ;W,k) = 1

N

N

∑
n=1

I(cn ≥ k)cn. (2)

The statistic M(Y ;W,k) is defined as the censored population average score, in
which the censorship trait stems from setting the scores of non-poor people to zero,
in order to fulfil the focus axiom. It is also known in the literature as the adjusted
headcount ratio (Alkire and Foster, 2011). In contrast with H(Y ;W,k), M(Y ;W,k)
takes into account the breadth of deprivation to characterise the overall level of
poverty. The measure M(Y ;W,k) fails to satisfy the Distribution Sensitivity ax-
iom and therefore does not belong in the class P2. However, as we discuss below,
unambiguous orderings with respect to M(Y ;W,k) for all k imply robust orderings
within the class P2.

To derive the new dominance conditions it is also useful to consider the uncen-
sored deprivation headcount, which measures the proportion of people deprived in
dimension d irrespective of their deprivation in other dimensions:

Ud(Y ) ≡ 1

N

N

∑
n=1

ynd. (3)
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3 Dominance Conditions for Counting Measures

In this section we present the new dominance conditions to assess the robust-
ness of counting poverty orderings within the classes of poverty measures P1 and
P2. These conditions build on the dominance results derived by Lasso de la Vega
(2010). Let P (A;W,k) and P (B;W,k) refer to the social poverty indices of pop-
ulations A and B, respectively, and let H(A;W,k) and H(B;W,k) refer to their
multidimensional headcounts. The following result sets out the conditions for un-
ambiguous poverty orderings within the class P1:

Condition 1. P (A;W,k) < P (B;W,k) for all P in P1 and any identification cut-
off, k, if and only if H(A;W,k) ≤ H(B;W,k) ∀k ∈ [0, v2, ...,1] ∧ ∃k∣H(A;W,k) <
H(B;W,k).

Proof. See Lasso de la Vega (2010).

Condition (1) states that poverty comparisons of A and B are robust to the
choice of the poverty function satisfying FOC,MON,SYM, and PRI only when
the ordering of headcount measures is the same for every relevant value of k.

Now let M(A;W,k) and M(B;W,k) refer to the adjusted headcount ratio of pop-
ulations A and B, respectively. The following result establishes the conditions for
unambiguous poverty rankings within the class P2:

Condition 2. P (A;W,k) < P (B;W,k) for all P in P2 and any identification cut-
off, k, if and only if M(A;W,k) ≤ M(B;W,k) ∀k ∈ [0, v2, ...,1] ∧ ∃k∣M(A;W,k) <
M(B;W,k).

Proof. See Lasso de la Vega (2010) and Chakravarty and Zoli (2009).

Thus, when the adjusted headcount ratio in population A is lower than in B

for every relevant value of k then we can claim that poverty in A is lower than in
B for any inequality-sensitive poverty measure in P2 satisfying DS. The following
remark links condition (1) to (2):

Remark 1. If H(A;W,k) ≤H(B;W,k) ∀k ∈ [0,1] ∧∃k∣H(A;W,k) <H(B;W,k) then
M(A;W,k) ≤M(B;W,k) ∀k ∈ [0, v2, ...,1] ∧ ∃k∣M(A;W,k) <M(B;W,k).

Proof. See Alkire and Foster (2011, Theorem 2).

Remark (1) states that the existence of dominance within the class P1 implies
dominance within the class P2, which is not surprising given that P2 ⊂ P1. Condi-
tions (1) and (2) can also be restricted to apply only to a subset of relevant k values,
ruling out the lowest ones below a minimum kmin. In order to proceed this way, we
construct censored deprivation scores such that: cn = 0 whenever cn < kmin. Then
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conditions (1) and (2) apply only to those P which rule out poverty identification
approaches with k < kmin.

The conditions presented above allow us to assess the sensitivity of poverty
orderings to the choice of the social poverty measure. However, these conditions
hold only for a particular choice of dimensional weights. With alternative selection
of weights the conditions would need to be evaluated again as the values of the
poverty statistics H and M depend on the specific values of the multidimensional
poverty cut-off and weights.

We propose new dominance conditions to examine the robustness of poverty
orderings to the choice of weighting schemes. First, we present the necessary
and sufficient conditions whose fulfilment guarantees, separately, the robustness
of conditions (1) and (2) to any possible choice of dimensional weights. Then, we
present a sufficient condition whose fulfilment guarantees the robustness of con-
dition (1), as well as the robustness of condition (2) by implication, to any possi-
ble choice of dimensional weights. Finally, we present a set of conditions whose
fulfilment is necessary (but insufficient) to guarantee the robustness of poverty
orderings to changes in the poverty index, identification cut-off, and dimensional
weights. The advantage of both the exclusively sufficient and the exclusively nec-
essary conditions resides in their easier implementation for testing purposes vis-
a-vis the jointly necessary and sufficient conditions. Before presenting the new
dominance results, the next subsection introduces additional notation necessary
for the derivation of the conditions.

3.1 Additional Notation and Useful Poverty Statistics

We denote by S(D) the power set with all possible combinations of welfare dimen-
sions D excluding the empty set. For a given number of dimensions, D, the number
of elements in S(D) is equal to 2D − 1. Let Os denote the population subgroup de-
prived only in dimensions s ∈ S(D) and let cs denote the poverty score for those
deprived in the dimensions in s. Thus, for instance, for D = 3, the sets O1, O1,2,
and O1,2,3 include, respectively, the persons deprived only in dimension 1, those
deprived in dimensions 1 and 2 but not in dimension 3, and those deprived in the
three dimensions.

For each Os we define the subset headcount, Hs, as the proportion of people who
are deprived only in the subset of dimensions s ∈ S(D). For any s ∈ S(D), the
measure Hs is equal to:

Hs ≡
∣Os∣
N

, (4)

where ∣Os∣ is the number of people deprived exclusively in dimensions s ∈ S(D).
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Note that when the whole set of dimensions is considered, the subset headcount
H1,2,...,D is basically the proportion of people who are deprived in each and every
possible dimension.

We denote by Γ the set with all plausible sets of the multidimensionally poor
consistent with the identification rule ρ. The set Γ includes all combinations of ele-
ments Os with s ∈ S(D) that could make up the set of the multidimensionally poor.
Any set γ ∈ Γ can be expressed as the union of groupsOs. For instance, in the case of
D = 2, the set of potential poverty sets is given by Γ = {(O1,2), (O1,2⋃O1), (O1,2⋃O2),
(O1,2⋃O1⋃O2)}, where the first and last elements in this set correspond to the
cases where the group identified as multidimensionally poor includes those de-
prived in all the dimensions and those deprived in any dimension, respectively. In
practice the set identified as poor will depend on the threshold k and the score cs

of the different groups Os. Note, however, that because ρ satisfies the property of
poverty consistency, then any γ ∈ Γ must include the group of those deprived in
all dimensions. We denote by Π(γ) the measure of any set γ ∈ Γ. This measure is
defined as the proportion of the population belonging in γ which can be expressed
as follows:

Π(γ) = 1

N
∑
Os⊂ γ

∣Os∣ = ∑
Os⊂ γ

Hs, (5)

where ∣Os∣ is the size of group Os including all those deprived in the set of
dimensions s ∈ S(D). For any γ ∈ Γ, the measure Π(γ) can be expressed as the sum
of the subset headcounts of the sets Os included in γ.

For any γ ∈ Γ, let γd ⊂ γ denote the subset of elements of γ involving only groups
deprived in dimension d. For instance, for D = 2, the sets γ1 and γ2 associated to γ =
(O1,2⋃O1⋃O2) are given by γ1 = (O1,2⋃O1) and γ2 = (O1,2⋃O2). For γ = (O1,2⋃O1)
the sets are γ1 = (O1,2⋃O1) and γ2 = (O1,2). For any γ ∈ Γ it is easy to show that
γ = ⋃Dd=1 γd. Let Γd denote the set of all γd that can be part of a multidimensional
poverty set γ. In the case of D = 2, the sets Γ1 and Γ2 have only two elements and
are given by Γ1 = {(O1,2), (O1,2⋃O1)} and Γ2 = {(O1,2), (O1,2⋃O2)}. The measure of
any set γd ∈ Γd is defined as the proportion of the population belonging in γd which
is given by the following expression:

Π(γd) =
1

N
∑

Os⊂ γd
∣Os∣ = ∑

Os⊂ γd
Hs, (6)

where ∣Os∣ is again the size of group Os including those deprived in the set of
dimensions s ∈ S(D). It is important to note that for any number of dimensions
D, it holds that ∑D

d=1 dim(Γd) ≤ dim(Γ). The sets Γ and Γd will play a key role
in the new dominance conditions and they will be discussed in detail in the next
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subsection.

3.2 Necessary and sufficient conditions

The following condition is both necessary and sufficient to guarantee unambiguous
poverty orderings within the class of measures P1:

Condition 3. Consider the class of poverty measures P1. The following three state-
ments are equivalent:

1. P (A;W,k) < P (B;W,k) for all P ∈ P1 for any weighting vector, W , and poverty
threshold, k.

2. H(A;W,k) ≤ H(B;W,k) ∀k ∈ [0, v2, ...,1] ∧ ∃k∣H(A;W,k) < H(B;W,k), for any
weighting vector W .

3. ΠA(γ) ≤ ΠB(γ) ∀γ ∈ Γ ∧ ∃γ∣ΠA(γ) < ΠB(γ).

Proof. The equivalence between (1) and (2) follows immediately from condition
(1). In order to complete the proof we just need to demonstrate the equivalence of
(3) with one of the first two statements. The multidimensional poverty headcount,
H(k), can be expressed in terms of the size of groups Os as follows:

H(Y ;W,k) = 1

N

N

∑
n=1

I(cn ≥ k) =
1

N
∑

s∈S(D)
I(cs ≥ k)∣Os∣, (7)

where ∣Os∣ is the size of group Os including all those deprived in the set of di-
mensions s ∈ S(D). The term on the right-hand side is just the observed relative
frequency of the poverty set γ ∈ Γ associated to a particular cut-off, k, and weight-
ing vector W . Therefore, given that H(A;W,k) ≤H(B;W,k) is true for any possible
combination of cut-offs and weighting vectors (with at least one strict inequality),
then this implies that the probability of Π(γ) in Amust not be greater than in B for
any γ ∈ Γ (and at least once strictly lower). On the other hand, if Π(γ) for any con-
ceivable poverty set is not greater in A than in B (and at least once strictly lower),
then it must be true that H(A;W,k) ≤H(B;W,k) for any possible combination of k
and W (with at least one strict inequality).

The following result establishes the necessary and sufficient conditions for un-
ambiguous poverty orderings within the class P2:

Condition 4. Consider the class of poverty measures P2. The following three state-
ments are equivalent:
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1. P (A;W,k) < P (B;W,k) for all P ∈ P2 for any weighting vector, W , and poverty
threshold, k.

2. M(A;W,k) ≤M(B;W,k) ∀k ∈ [0, v2, ...,1] ∧ ∃k∣M(A;W,k) <M(B;W,k), for any
weighting vector W .

3. For all ΠA(γd) ≤ ΠB(γd) ∀γd ∈ Γd, d = 1, ...,D ∧ ∃γd∣ΠA(γd) < ΠB(γd).

Proof. The equivalence between (1) and (2) follows immediately from condition
(2). To prove the equivalence with (3) it is important to note first that, for a given
combination of weights and multidimensional cut-off, the adjusted headcount ra-
tio, M(k), can be expressed as the weighted sum of the probabilities of the sets
γd included in the set of multidimensionally poor γ associated to that particular
combination of k and W :

M(Y ;W,k) = 1

N

N

∑
n=1

I(cn ≥ k)cn =
D

∑
d=1

wdΠ(γd), (8)

The difference in adjusted headcount ratios can then be expressed as:

M(A;W,k) −M(B;W,k) =
D

∑
d=1

wd[ΠA(γd) −ΠB(γd)]. (9)

Since [ΠA(γd) −ΠB(γd)] ≤ 0 for all γd ∈ Γd and d = 1, ...,D (with at least one strict
inequality), then for any vector, W , and cut-off, k, it is true that [M(A;W,k) −
M(B;W,k)] ≤ 0 (with at least one strict inequality) which proves the sufficiency
part of the equivalence. Now assume that for some γd it holds that [ΠA(γd) −
ΠB(γd)] > 0, then it is possible to find a vector of dimensional weights, W , such
that [M(A;W,k)−M(B;W,k)] > 0. But this contradicts statement (2). Therefore it
must be true that Π(γd) in A is not greater than in B for all γd ∈ Γd and d = 1, ...,D

(and at least once strictly lower).

The following remark establishes the link between condition (3) and (4):

Remark 2. If H(A;W,k) ≤ H(B;W,k) ∀k ∈ [0,1] ∧ ∃k∣H(A;W,k) < H(B;W,k)
for any vector of weights, W , then M(A;W,k) ≤ M(B;W,k) ∀k ∈ [0, v2, ...,1] ∧
∃k∣M(A;W,k) <M(B;W,k) for any weighting vector, W .

Proof. This remark is an extension of remark (1) to any possible vector of weights
and its proof follows from Alkire and Foster (2011, Theorem 2).

Remark (2) implies the existence of dominance for the class of poverty measures
P2 ⊂ P1 whenever there exists dominance within the class P1 of poverty measures.
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3.3 General sufficient conditions

Conditions (3) and (4) provide a simple way to ascertain the existence of dominance
in poverty comparisons based on counting measures. However, testing those con-
ditions may require comparing a large number of statistics. In fact, as we show
in the next section, the number of elements in the sets Γ and Γd increases ex-
ponentially with the number of dimensions involved in the poverty comparisons.
With that concern in mind, we derive a set of useful conditions which are much
easier to implement in practice, especially when D is relatively large, as they re-
quire a much smaller number of statistics. Firstly, we derive a sufficient condition
whose fulfillment guarantees a robust pairwise poverty ordering for any poverty
measures in the most general classes P1 and P2, as well as, the measures H and
M . Secondly, in the next subsection, we introduce two necessary conditions whose
violation implies that no unambiguous poverty ordering can be established when
comparing two populations. The sufficient condition is the following:

Condition 5. Let P (Y ;W,k) be any poverty measure belonging to the class P1. If
all the subset headcounts Hs of A are never higher than those of B and at least one
of them is strictly lower, then P (A;W,k) ≤ P (B;W,k) ∀k ∧∃k∣P (A;W,k) < P (B;W,k)
for all possible weighting vectors, W .

Proof. From equation (5) we know that, for any γ ∈ Γ, the measure Π(γ) can be
expressed as a sum of subset headcounts. Therefore if all the subset headcounts of
A are never higher than those of B and at least one of them is strictly lower, then
the value of Π(γ) in A will never be higher than that in B for any γ ∈ Γ (and at
least one will be strictly lower).9 From condition (3) this implies that P (A;W,k) ≤
P (B;W,k) ∀k∧∃k∣P (A;W,k) < P (B;W,k) for all possible weighting vectors, W , and
all P (Y ;W,k) ∈ P1.

Note this sufficient condition applies also to the class P2 and the indices H and
M . This is because, by conditions (3) and (4), dominance within the class P1 implies
dominance within the class P2, as well as the poverty indices H and M . Being a
sufficient condition, a violation of (5) does not rule out poverty dominance of A
over B. However, as shown in the necessary condition (6) below, if condition (5) is
violated because HA

(1,2,...,D) > HB
(1,2,...,D), then we can actually conclude that A does

not dominate B. Hence a combination of condition (5) and the necessary conditions
of the next section, can go a long way in ascertaining pairwise poverty dominance
(or lack thereof) when D is large.

9But note that reverse is not true.

13



3.4 General necessary conditions

We derive two useful necessary conditions which are easy to implement, as they
require one and D statistics, respectively. The first of these necessary conditions
is the following:

Condition 6. Let P (Y ;W,k) be any poverty measure belonging to the classes P1 or
P2, or the multidimensional measures, H(Y ;W,k) and M(Y ;W,k). If P (A;W,k) ≤
P (B;W,k) ∀k∧∃k∣P (A;W,k) < P (B;W,k) for all possible weighting vectors, W , then:
HA

(1,2,...,D) ≤HB
(1,2,...,D).

Proof. First note that the set O1,2,...,D including all those individuals deprived in all
dimensions belongs to any multidimensional poverty set in Γ and also to the sets
Γd with d = 1, ...,D. From conditions (3) and (4) we know that, when P (A;W,k) <
P (B;W,k) for all W and k, the relative frequency of all elements of Γ and Γd in
A must not be greater than in B, which implies that ΠA(O1,2,...,D) = HA

(1,2,...,D) ≤
HB

(1,2,...,D) = ΠB(O1,2,...,D).

Condition (6) states that whenever multidimensional poverty in population A

is lower than in population B for every possible weighting vector, W , and identifi-
cation cut-off, k, then it must be the case that the percentage of people deprived in
every dimension in A (i.e. following an intersection approach to poverty identifica-
tion) cannot be higher than the percentage of people from B in the same situation.
This is a simple but powerful condition: it basically means that we can rule out
the possibility of dominance between two populations by simply comparing the
percentage of people deprived in all dimensions in each population. Note that this
condition applies to any poverty index in P1 or P2, as well as to the multidimen-
sional headcount (H; not included in class P1) and the adjusted headcount ratio
(M ; not included in class P2).

The second necessary condition is:

Condition 7. Let P be any poverty measure belonging to the classes P1 or P2,
or the multidimensional measures, H and M . If P (A;W,k) ≤ P (B;W,k) ∀k ∧
∃k∣P (A;W,k) < P (B;W,k) for all possible weighting vectors, W , then: Ud(A) ≤
Ud(B) ∀d ∈ [1,2, ...,D].

Proof. Note that for all d ∈ [1,2, ...,D], it is easy to show that the set including
all those individuals deprived in dimension d always belongs to the sets Γ and Γd.
From conditions (3) and (4) we know that, when P (A;W,k) < P (B;W,k) for all W
and k, the relative frequency of all elements in Γ and Γd in A must not be greater
than in B, which implies Ud(A) ≤ Ud(B) ∀d ∈ [1,2, ...,D].
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Condition (7) states that if poverty in population A is unambiguously lower
than in B then it must be the case that all the uncensored deprivation headcount
ratios in A cannot be higher than their respective counterparts from B. This is,
again, a simple but powerful condition: without comparing the relative frequencies
of all elements in the sets Γ and Γd, if there exists just one variable d for which
Ud(A) > Ud(B), then we can rule out the possibility that A dominates B for every
poverty measure in P1 or P2, and any conceivable weighting vector, W , and cut-off
value, k.

4 Application of the New Dominance Conditions

The dominance results presented in the previous section provide a useful analyt-
ical framework to evaluate the robustness of poverty orderings based on counting
measures. The evaluation of those conditions, however, requires the computation
and comparison of a number of statistics which grows with the number of wel-
fare dimensions. Table 1 below shows the number of statistics involved in each
condition for values of D from 2 to 5.

In general, conditions (1) and (2) involve a small number of statistics vis-a-vis
the conditions applicable to the case of variable weights, i.e. (3) and (4). This
is not surprising as these conditions permit to assert poverty dominance within
the classes P1 and P2 only for a given vector of dimensional weights. Thus, for
any vector of weights, conditions (1) and (2) require the comparison of the indices
H(Y ;W,k) and M(Y ;W,k) for all relevant values of the threshold k. These values
depend on the specific vector of weights and it is easy to show that the number of
relevant values is never greater than ∑D

i=0 (Di ) = 2D.
The necessary and sufficient conditions (3) and (4) are the most demanding of

all conditions since they require the comparison of all the sets γ and γd belonging
to the sets Γ and Γd. While derivation of these sets is trivial when D is small, it
gets more complex as the number of dimensions increases. This is because the
number of elements in Γ and Γd grows fast with D as the combinations of groups
Os that can make up the set of the multidimensionally poor rise exponentially with
the number of dimensions.

In order to derive the sets Γ and Γd we developed two search algorithms that
identify the combinations of Os that can form any plausible poverty set γ and their
dimensional components γd.10 The key to the identification of the potential poverty

10The algorithms gamma and gammad are coded in Stata version 14.0 and are included as
part of the Stata package Domcount especifically developed to empirically implement the new
dominance conditions. The package is available at https://drive.google.com/file/d/
0B4MaiGQpsjKqeUlvQWJhUWpJbk0/view.
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sets in these algorithms is the consistency property of the poverty identification
function ρk (Lasso de la Vega, 2010). This property requires that, for any two sets
Os and Os′ with cs ≤ cs′, if the set Os belongs to a given poverty set γ then that must
be the case also of set Os′. Thus, for instance, if a poverty set γ includes the group
O1 comprising those deprived only in dimension 1, then it must also include all
those sets Os with larger cs′ involving combinations of deprivation in dimension 1
and any other dimensions. For instance, in the case ofD = 3, ifO1 belongs to any set
γ then that must be the case also of the groups O1,2, O1,3, and O1,2,3, including those
deprived in dimensions 1 and 2; 1 and 3; and 1, 2, and 3; respectively. As Table
(1) shows, the number of potential poverty sets grows more than exponentially for
conditions (3) and (4); with the number of dimensions jumping from 18 when D = 3

to 7,579 when D = 5, in the case of condition (3). Although smaller, the number
of sets γd required to evaluate condition (4) also grows significantly fast, with D

reaching 690 when D = 5.

Table 1 – Number of statistics involved in each dominance condition

Statistic D = 2 D = 3 D = 4 D = 5

Fixed weights
Necessary & sufficient
Condition 1 H(Y ;W,k) 4 8 16 32
Condition 2 M(Y ;W,k) 4 8 16 32

Variable weights
Necessary & sufficient
Condition 3 Π(γ) 4 18 166 7579
Condition 4 Π(γd) 3 10 63 690
Sufficient
Condition 5 Hs 3 7 15 31
Necessary
Condition 6 H(1,2,...,D) 1 1 1 1
Condition 7 Ud(Y ) 2 3 4 5

The sufficient condition (5) involves the comparison of the subset headcounts
Hs for all combinations of dimensions s in the power set S(D). The number of ele-
ments in this set, excluding the empty set, is equal to 2D−1 which gives the number
of statistics to be compared. Finally the necessary conditions (6) and (7) are the
easiest to evaluate as they require, respectively, the comparison of the percentage
of people deprived in all dimensions, and the uncensored deprivation headcounts
Ud reporting the proportion of people deprived in each of the dimensions.
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4.1 A general testing framework

While the conditions presented above can be tested with many different tests, we
propose an intersection-union, multiple-comparison test which is convenient for
its simplicity, generally low size, and decent power for pair-wise population com-
parisons (Dardanoni and Forcina, 1999; Hasler, 2007). Evaluating each of the
dominance conditions requires computing and comparing R ≥ 1 sample statistics
in the forms of sample means, e.g. M(k) for all relevant values of k, which are
asymptotically standard-normally distributed (i.e. the assumptions of the central
limit theorem hold).

Let z(r) ≡ XA(r)−XB(r)
SE[XA(r)−XB(r)] , where XA(r) is a sample mean for A (e.g. MA(1))

and SE[XA(r) −XB(r)] is the standard error of the difference XA(r) −XB(r). We
propose the following null and alternative hypotheses:

Ho ∶ z(r) = 0 ∀r = 1,2, ...,R

Ha ∶ z(r) < 0 ∀r = 1,2, ...,R

When testing these hypotheses we reject the null in favour of the alternative if
max{z(1), z(2), ..., z(R)} < zα < 0, where zα is a left-tail critical value, and α is both
the size of a single-comparison test as well as the overall level of significance of
the multiple-comparison test. It is not difficult to show that, generally, the overall
size of the test will be lower than α. Given the nature of the conditions, if we reject
the null in favour of the alternative hypothesis then A dominates B in the sense
of being deemed less poor for a broad class of poverty measurement choices (which
depends on the condition in question).

The formula of the specific z-statistics varies across conditions as different con-
ditions look at different aspects of the distribution of deprivations. Below we
present the statistics used for each condition.

Test of conditions 1 and 2

For condition (1) we use z-statistics of the form:

z(k) = HA(k) −HB(k)√
σ2
HA

(k)
NA + σ2

HB
(k)

NB

, (10)

where:

σ2
HA(k) =HA(k)[1 −HA(k)]. (11)

For condition (2) we use the same statistic but replacing H(k) with M(k), and
noting that the variance in this case is given by:
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σ2
MA(k) =

1

NA

NA

∑
n=1

[cn]2I(cn ≥ k) − [MA(k)]2 (12)

Test of conditions 3 and 4

These conditions require the comparison of the measure of the sets γ ∈ Γ and γd ∈
Γd. To this purpose, for condition (3) we consider statistics of the form:

z(γ) = ΠA(γ) −ΠB(γ)√
σ2

ΠA(γ)
NA +

σ2
ΠB(γ)
NB

, (13)

where Π(γ) is given by expression (5) and:

σ2
ΠA(γ) = ΠA(γ)[1 −ΠA(γ)]. (14)

For condition (4) the formulae are the same but simply replacing Π(γ) with
Π(γd).

Test of condition 5

This condition compares the subset headcounts Hs for all combinations of dimen-
sions s in the power set S(D). We use the following statistic:

z(s) = HA
s −HB

s√
σ2

HAs

NA +
σ2

HBs

NB

, (15)

where Hs is given by equation (4) and:

σ2
HA
s
=HA

s [1 −HA
s ]. (16)

Test of condition 6 and 7

For the necessary condition (7) we use z-statistics of the form:

zd =
Ud(A) −Ud(B)√
σ2
Ud(A)
NA +

σ2
Ud(B)
NB

, (17)

where:

σ2
Ud(A) ≡ Ud(A)[1 −Ud(A)]. (18)

These formulae can also be used for condition (6) but noting that evaluating
this condition requires only the comparison of the percentage of people deprived in
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all possible dimensions which is given by H1,2,...,D.

5 Empirical illustration: Poverty in Australia in
the 2000s

We use the new dominance results to evaluate the robustness of poverty trends in
Australia over the first decade of the XXI century. This was a period of strong in-
come growth in which Australia outperformed most developed countries. This was
particularly true during the period 2001-2007, where incomes grew at an average
rate above 3 per cent largely driven by the mining boom and favourable trends in
commodity prices. Although to a lesser extend than the US and European coun-
tries, Australia’s economic performance was also affected by the Global Financial
Crisis (GFC) as reflected in the rapid increase in unemployment between April
2008 and June 2009 (from 4.1 to 5.7 per cent). This negative shock, together with
the declining mining boom, led to slower income and employment growth in the
period 2008-2010 relative to the pre-GFC years.

We evaluate poverty trends in Australia using data from the Household Income
and Labour Dynamics in Australia (HILDA) survey. This is a nationally represen-
tative survey initiated in 2001, which collects detailed socio-economic information
from more than 7,000 households and their members every year. For the illus-
tration we consider three indicators of economic disadvantage: a binary income
poverty indicator equal to 1 if the household’s annual income is below 60 per cent
of the median equivalent income; an asset-poverty indicator which is equal to 1
when the household lacks enough assets to sustain its members above the income
poverty line for three months; and a measure of financial hardship equal to 1
whenever the household reports that at least three of the following circumstances
occurred along the financial year: could not pay electricity, gas or telephone bills
on time; could not pay the mortgage or rent on time; pawned or sold something;
went without meals; was unable to heat the home; asked for financial help from
family, friends, or community organizations. For the income and wealth poverty
indicators, the income and wealth variables were adjusted by household size using
the OECD modified equivalence scale that assigns a value of 1 to the first adult,
0.5 to subsequent adults in the household, and 0.3 to every member under the age
of 15. The unit of analysis for poverty comparisons is the individual and each in-
dividual is assigned the value of the poverty indicators computed at the household
level.

Table 2 shows the prevalence of the poverty indicators for the years 2002,
2006, and 2010. The levels of economic deprivation declined substantially during
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the years of strong economic growth that preceded the GFC. Income and wealth
poverty rates fell, respectively, about 2 and 1.4 percentage points from 2002 to
2006. The income and wealth gains led to a decline in the proportion of people ex-
periencing financial hardship which, by 2006, was more than 1.7 percentage points
below that in 2002. By contrast, economic disadvantage increased in the years fol-
lowing the GFC. By 2010 the income and wealth poverty rates were above those of
2006 but still below the levels observed at the start of the decade.

Table 2 – Poverty indicators in Australia(%)

Year Income Wealth Financial hardship
2002 18.47 8.36 6.65
2006 16.55 6.97 4.93
2010 18.21 7.39 5.89

Figure 1 shows the multidimensional headcount H(k) (horizontal axis) and the
adjusted headcount ratio M(k) (vertical axis) for the years 2002, 2006, and 2010
assuming equal weights for the three dimensions. Estimates of the indices are dis-
played for each relevant values of the poverty threshold k (1, 2/3, and 1/3, from the
origin outward). A point in the graph thus represents the vector (H,M ) for a year
and poverty cut-off, such that, for a given value of k, points located further away
from the origin indicate higher levels of multidimensional poverty. Inspection of
the figure reveals a substantial decline in poverty in the years preceding the GFC.
Our estimates of M and H for 2002 are larger than those for 2006 for any relevant
value of k. This positive trend was partially reversed in the years following the
GFC. Indeed, poverty estimates for 2010 are greater or equal than those in 2006
for any poverty cut-off. Despite this change, poverty levels by 2010 were still lower
than those at the start of the decade.
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Figure 1 – M(k) and H(k) indices (equal weights)
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To evaluate whether the poverty orderings based on the H(k) and M(k) indices
for the case of equal weights coincide with those of any measure in the classes P1

and P2 we apply the dominance conditions (1) and (2). Tables 3 and 4 present the
statistics required to test each of those conditions.11 For this and all subsequent
tests, we present the results for all pairwise comparisons such that the statistic
in each cell serves to test whether the year in the column dominates (i.e., has
less poverty than) the year in the row. For conditions (1) and (2), the statistics in
the tables correspond to the maximum value of the z(k) statistics (k = 1,2/3,1/3)
relevant for each pairwise comparison.12 When comparing 2002 with 2006, we
find statistical evidence to reject the hypothesis of equal poverty in favour of the
alternative whereby poverty declined between the two years. Thus, under the
assumption of equal weights, using standard significance levels we can conclude
that poverty in 2006 was lower than in 2002 for any poverty index in the class
P1. Based on our estimates, we cannot unambiguously assert that poverty levels

11These statistics, as well as those used to test the other conditions, were computed using the
Stata program robust included in the Stata package Domcount available at https://drive.
google.com/file/d/0B4MaiGQpsjKqeUlvQWJhUWpJbk0/view.

12Note that the statistics in the column for 2006 are the same for conditions (1) and (2). This is
because, for the statistics based on both the M and H measures, the maximum difference between
2006 and the other two years occurs for k = 1, and we know that H(1) =M(1).
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in 2010 were different to those in 2006. However, the results for 2010 and 2002
show that the level of poverty in 2010 was still below that in 2002, although this
results holds only for the class P2 of poverty measures as we fail to reject the null
hypothesis for condition (1).

Table 3 – Test of condition 1 (maximum statistics)

Ho ∶H(tA;k) =H(tB;k)∀k versus Ha ∶H(tA;k) <H(tB;k)∀k

HH
HHHHtB

tA 2002 2006 2010

2002 0.00 -4.70 -1.14
2006 5.64 0.00 3.54
2010 3.19 -1.49 0.00

Table 4 – Test of condition 2 (maximum statistics)

Ho ∶M(tA;k) =M(tB;k)∀k versus Ha ∶M(tA;k) <M(tB;k)∀k

H
HHH

HHtB

tA 2002 2006 2010

2002 0.00 -4.70 -2.41
2006 6.30 0.00 3.86
2010 3.19 -1.49 0.00

These dominance results apply only to the case of equal weights. Nothing a
priori ensures that they will hold under different weighting schemes. Can we
unambiguously claim that poverty in 2006, or 2010, was lower than in 2002 re-
gardless of the choice of dimensional weights? In order to answer this question we
now turn to the new poverty dominance conditions.

We start the analysis looking at the necessary conditions as these allow us to
rule out the existence of dominance by checking only a limited number of condi-
tions. Table 5 shows the statistics to test the necessary condition (7) which involves
the comparison of the uncensored deprivation headcount Ud of the different dimen-
sions. The value reported in each cell corresponds to the maximum value of the
zd statistics (d = 1,2,3) relevant for each pairwise comparison. A sufficiently large
negative value of the statistic is taken as evidence against the null hypothesis and
the failure to reject this hypothesis means that we can rule out the existence of
dominance between the compared years. Interestingly, our results rule out the ex-
istence of dominance for all pairwise comparisons except that between 2006 and
2002. Thus, we cannot establish any unanimous ranking for any of the poverty
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comparisons involving 2002 versus 2010 and 2006 versus 2010. This result il-
lustrates the sensitivity of multidimensional poverty orderings based on counting
poverty measures to the choice of dimensional weights and poverty cut-off.

In order to evaluate whether poverty in 2006 was unambiguously lower than
in 2002 we use the necessary and sufficient conditions. Table 6 shows the statis-
tics required to test the sufficient condition (5). This condition involves the com-
parison of the subset headcounts and the rejection of the null hypothesis implies
that the sufficient condition for dominance is satisfied. Using standard levels of
significance, we find no statistically significant evidence to reject the null in any
pairwise comparison. In particular, the value of the statistic for the comparison
of 2006 against 2002 is 0.07, which implies that the dominance of 2006 over 2002
cannot be unambiguously asserted using the sufficient condition. However, this re-
sult does not rule out the possibility of dominance, since condition (5) is sufficient
but not necessary.

Table 7 shows the statistics to evaluate the necessary and sufficient condi-
tion (3). Evaluating this condition requires the comparison of the measure of all
poverty sets γ ∈ Γ. Interestingly, the result for the comparison of 2006 and 2002
suggests there is enough evidence to reject the null and therefore to assert that
poverty by 2006 was unambiguously lower than in 2002 for any choice of dimen-
sional weights and poverty cut-off and any poverty measure in P1 or P2.

Table 5 – Test of necessary condition 7 (maximum statistics)

Ho ∶ Ud(tA) = Ud(tB) ∀d ∈ [1,2, ...,D] versus Ha ∶ Ud(tA) < Ud(tB)∀d

HHH
HHHtB

tA 2002 2006 2010

2002 0.00 -3.82 -0.50
2006 5.60 0.00 3.26
2010 2.69 -1.22 0.00

Table 6 – Test of sufficient condition 5 (maximum statistics)

Ho ∶Hs(tA) =Hs(tB) ∀s ∈ S(D) versus Ha ∶Hs(tA) <Hs(tB) ∀s ∈ S(D)

HH
HHHHtB

tA 2002 2006 2010

2002 0.00 0.07 1.05
2006 4.70 0.00 3.33
2010 3.19 0.29 0.00
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Table 7 – Test of necessary and sufficient condition 3 (maximum statistics)

Ho ∶ ΠtA(γ) = ΠtB(γ) ∀γ ∈ Γ versus Ha ∶ ΠtA(γ) < ΠtB(γ) ∀γ ∈ Γ

H
HHH

HHtB

tA 2002 2006 2010

2002 0.00 -3.45 -0.50
2006 6.79 0.00 4.27
2010 3.78 -0.50 0.00

6 Concluding remarks

In this paper we sought to derive robustness conditions to evaluate the sensitivity
of poverty orderings based on counting measures. Building on the results in Lasso
de la Vega (2010), we propose fundamental conditions whose fulfilment is both nec-
essary and sufficient to ensure that both first-order and second-order propositions
work for any conceivable weighting vector with positive elements. However, since
these conditions may be cumbersome to implement when the number of variables
is large,13 we also derived two useful conditions whose fulfillment is necessary,
but insufficient, for robust first- and second-order comparisons using any possible
weighting vector. While these conditions are insufficient, they are fewer in num-
ber, and much easier to compute. When they are not met we can immediately rule
out the robustness of second-order dominance in poverty reduction to any choice of
weights. We also provided a useful sufficient condition whose fulfillment guaran-
tees first and second-order comparisons for any possible weighting vector. Though
this condition is not necessary (hence its violation would not preclude the exis-
tence of a dominance relationship), it also bears the advantage of a much easier
implementation vis-a-vis the set of necessary and sufficient conditions.

Above and beyond the conditions derived in this paper, it is also possible to
derive sets of necessary and sufficient conditions which guarantee robust egali-
tarian poverty comparisons for a subset of weights, as well as for broader sets of
weights (e.g. admitting zero values). Likewise further useful necessary conditions
are derivable if we opt to restrict the set of admissible weighting vectors, or the do-
main of k cut-offs, or both jointly. Some examples are available upon request. The
development of general methods for the derivation of conditions whose fulfillment
guarantees partial robustness, i.e. full robustness only to combinations of subsets
of parameters (e.g. joint restrictions on weights and cut-offs, etc.) is left for future
research.

13Even though we have also rendered a ready-to-use algorithm available for Stata users.
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Finally, the empirical application to Australia over time illustrated the use-
fulness of the new robustness conditions. In the Australian case, we learned that
poverty reduction between 2002 and 2006 was robust to any counting poverty func-
tional form, any poverty cut-off k, and any vector of deprivation weights. By con-
trast, the apparent trend of poverty increasing from 2006 to 2010 but leading to
overall lower poverty levels compared to 2002, did not prove robust to any conceiv-
able combination of the aforementioned parameters.
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