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NON-TECHNICAL SUMMARY  

Many studies have demonstrated a causal effect of ill health on labour-supply, whereby 

individuals with poor health or who experience health difficulties are less likely to 

participate in the labour market. In this study, I explore whether the labour-supply of 

individuals with different personalities –measured by control beliefs– responds differently 

to health shocks (measured by whether was admitted to hospital for 10 nights or more). 

To accomplish this, I follow the labour-supply trajectories of 649 initially full-time 

employed and healthy men who experience at some point in time an episode of ill health. 

The longitudinal data necessary to do so come from the German Socio-Economic Panel 

(SOEP), and spans years 1994 to 2012. 

My findings provide clear evidence of personality differences in labour supply responses 

to health shocks amongst German men. When compared with men who have positive 

control beliefs, men with negative control beliefs are on average 100% more likely to drop 

out of the labour force after a health shock. This drop out is unrelated to early retirement. 

In addition, when compared with men who have positive control beliefs, men with 

negative control beliefs work on average 12% fewer hours per week over the year when 

experiencing a health shock. 

These behavioural differences are strongest for men from low socioeconomic 

backgrounds, men who do not have access to private health insurance, and men who 

experience high intensity shocks to their health. Different labour-supply responses are 

also observed for conscientiousness and risk tolerance, traits that have been linked with 

willingness to invest and treatment compliance. 

Teaching individuals the ability to interpret experiences in an optimistic fashion and to 

understand the importance of taking self-responsibility could be a cost-effective way to 

counter-balance rising health care costs associated with an aging society and with 

increasing prevalence rates of avoidable illnesses (such as obesity, diabetes and 

cardiovascular disease). This would require interventions at the person or community 

level, with the possibility that such interventions begin during infancy and teenage years. 
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Abstract 

Many studies have demonstrated a causal effect of ill health on labor-supply. In this study, I 

explore the personality-related heterogeneity - measured by differences in control beliefs - in 

the labor-supply response to health shocks. To identify such behavioral differences, I follow 

the labor-supply trajectories of 649 initially full-time employed and healthy men who 

experience at some point in time an episode of ill health. When compared with men who have 

positive control beliefs, men with negative control beliefs are on average 100% more likely to 

drop out of the labor force - a drop out unrelated to early retirement - and work on average 

12% less hours per week the year after the health shock. These behavioral differences remain 

robust to alternative estimation samples and health-shock definitions. They are strongest for 

men from low socioeconomic backgrounds, who do not have access to private health 

insurance, or who experience high intensity shocks. Heterogeneous labor-supply responses 

are also observed for conscientiousness and risk tolerance, traits that have been linked with 

willingness to invest and treatment compliance. An important conclusion from the findings is 

that a small set of non-cognitive skills produces long term labor-market benefits in the advent 

of adversity. 

 

Keywords: Non-cognitive skills; locus of control; resilience; labor supply; health shocks; 

SOEP 



1 Introduction

During the course of a normal life span, most people will experience at least one traumatic life

event. Although such traumatic events can be highly debilitating in the short run, it is now

established that not all individuals will respond to life events in the sameway. Decades of research

conducted by the team of George Bonanno at Columbia University have demonstrated important

individual differences in the psychological adjustment and coping strategies to severe life events

(see Bonanno 2004; Bonanno et al. 2011). Psychological distress is a normal response to such

events, but some individuals fall into a chronic dysfunction after an adverse life event, while

others return to baseline levels after several months. Most of the research studying individual

differences in the response to life events has focused on disasters, exposure to warfare, and loss

of a loved one. In recent years, subsequent studies have identified similar individual differences

in the response to health-related adversities, such as emergency surgery, health epidemics, breast

cancer and physical trauma (see Bonanno et al. 2012, for an overviw of the literature).

The ability to cope with adversity is referred to as resilience in the Positive Psychology liter-

ature (See Seligman 2011). It is "the capacity to maintain, or regain, psychological well-being in

the face of challenge. The definition underscores ... the capacity to flourish, develop, and func-

tion effectively despite difficult circumstances or events" (p. 12 Ryff et al. 2012). An important

component of resilience are beliefs around whether one can influence the important outcomes of

one’s life. These positive control beliefs are often referred to in the literature as sense of mastery

(Masten 2014), self-efficacy (Bandura 1990) or internal locus of control (Rotter 1966). Economists

are increasingly interested in the health and labor-market benefits of positive control beliefs (see

Cobb-Clark 2015, for a review), especially so in the presence of adversity. For instance, Bud-

delmeyer and Powdthavee (2016) study the psychological benefits of positive control beliefs when

dealing with a series of negative life events ranging from the loss of a loved one to the experi-

ence of financial distress. Caliendo et al. (2014) and McGee (2015) show that positive control

beliefs help workers, who have lost their job, to search more intensively for re-employment, and

therefore are more likely to be re-employed.

In this study, I explore whether positive control beliefs can function as an insurance against

episodes of ill health. Instead of investigating the psychological wellbeing trajectories following
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an adverse event, I measure functioning as the ability to stay in the labor market. I hypothesize

that among individuals who experience a health shock those who exhibited positive control be-

liefs prior to the health shock are less likely to drop out of the labor market - or reduce their hours

of work - than those who exhibited negative control beliefs. They do so, because their attitude

helps them to undercut feelings of hopelessness which in turn allows them to exploit all possible

resources to counterbalance the negative impact of the health shock. To test this hypothesis, I

follow the labor-supply decisions of initially healthy and full-time employedmenwho experience

an episode of ill health at some point in time using data from the German Socio-Economic Panel

(SOEP), a nationally-representative longitudinal survey.1

Understanding the heterogeneity in coping mechanisms with health shocks is of paramount

importance to public policy because ill health has long-term economic consequences for indi-

viduals (See Smith 2005, 1999; Currie and Madrian 1999, for an overview). Episodes of ill health

may force older workers into early retirement (Disney et al. 2006; Wing Han Au et al. 2005;

Bound et al. 1999; Riphahn 1999) and younger workers out of the labor market (García-Gómez

et al. 2010; García-Gómez and López-Nicolás 2006). The employment effects of health shocks

persist over many years (Crichton et al. 2011; García-Gómez et al. 2013). Public policy may utilize

knowledge on the heterogeneity of coping behavior with health-related adversity to save public

taxpayer money on health and social insurance pay-outs.

There are two alternative avenues through which public policy could utilize this knowledge.

One avenue is to directly target individuals who experience adversity. For instance, life-coaching

sessions that improve positive thinking could be offered alongside standard medical treatment

during episodes of ill health. Such training is already provided in large scale to employees of

the US American military upon return from traumatizing military interventions (Seligman 2011).

Another avenue for public policy is to teach positive control beliefs as part of standard school

curriculum. Governments in California (United States), Ottawa-Carleton (Canada), and Victoria

(Australia) have already or are currently revising their school curricula to formalize resilience

education for children. The effectiveness of these initiatives has not been evaluated yet, nor do

we knowwhich intervention strategies are most successful in teaching and evaluating these skills
1The analysis is conducted on men only because for women it is difficult to disentangle episodes of ill health and

subsequent labor supply responses from pregnancy-related health problems and pregnancy-related labor supply
decisions.
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(see Schurer 2016, for evidence and discussion). Innovative methods to teach positive control

beliefs have been evaluated by Bernard et al. (2014) in a developing country context.2

Theoretically, there are several alternative mechanisms that could explain heterogeneous

labor-supply responses to health shocks, which are not caused by, but correlate with, control

beliefs. On the one hand, it may be that negative control beliefs measured at some point in time

just proxy latent health problems. Thus, instead of identifying true behavioral differences in

response to health shocks, control perceptions may just capture more intense health shocks or

worse childhood (ex ante) health that also explain labor supply trajectories. On the other hand,

positive control tendencies may just proxy higher levels of human capital or socioeconomic ad-

vantage. If there is an education gradient in positive control beliefs, then theymay just capture an

individual’s access to information, private health insurance, and high-quality care. I will present

a theoretical model in the next Section that describes and justifies these alternative channels.

To identify heterogeneous labor-supply responses to health shocks that are truly linked to

differences in control beliefs I will choose an empirical strategy that is able to shut off each of

these alternative mechanisms. Using German data has multiple advantages of testing these het-

erogeneous labor-supply responses. On the one hand, Germany has an almost universal and

relatively homogeneous health care system, with a high coverage of health care services, free

provider choice, and a high density of physicians and hospitals, factors which ensure access to

high-quality health care for all citizens (see Eibich and Ziebarth 2014). German labor-protection

laws further protect most workers from short-notice lay-offs due to health problems. Both insti-

tutional settings reduce the possibility that observed heterogeneous labor-supply responses are

reflections of unequal and difficult-to-observe access to care and past labor supply.

My estimation model is based on a standard specification used in the previous literature to

identify the causal effect of health shocks on labor supply (e.g. García-Gómez 2011; García-Gómez

and López-Nicolás 2006). I follow the health and labor-supply trajectories of a selected sample of

working-age men who have experienced an episode of ill health over a three-year time window.

In the benchmark model, episodes of ill health are defined as admission to hospital for at least
2The authors showed videos of successful people in randomly selected Ethiopian villages. They could then

demonstrate that in those randomly-selected villages both aspirations and control perceptions changed significantly
relative to villages where the videos were not shown, and improved control perceptions were associated with savings
and investment behaviors.
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10 nights. This measure provides variation in health that is more likely to be exogenous than,

for instance, self-reported measures of changes in health status (see García-Gómez et al. 2013,

for a similar approach and arguments). I estimate the probability of changes in labor supply

in period t as a function of a binary health shock measure (t-1), a continuous measure of ex

ante control perceptions (t=0), and an interaction term of the two. Similar specifications have

been used to identify the moderating effects of control beliefs on the effect of job loss and re-

employment (Caliendo et al. 2014; McGee 2015) or on the effect of life events on emotional health

(Buddelmeyer and Powdthavee 2016).

Importantly, to ensure that the labor-supply responses in period t do not merely reflect a fixed

propensity to work less that correlates with control beliefs and past health, I condition the anal-

ysis on a sample of full-time working and healthy men in period t− 2. Thus, I de facto prune the

data to make the treatment (negative control) and the control group (positive control) as com-

parable in terms of pre-treatment health and labor force outcomes. Any remaining long-term

differences in labor supply and workplace entitlements are controlled for by conditioning the

analysis on accumulated past unemployment experiences, past labor market productivity, years

spent at the firm, and employer characteristics, a strategy that has also been used by Riphahn

(1999). Moreover, control perceptions are measured strictly before health and labor supply tra-

jectories are observed. I use an averaged measure derived from factor analysis (e.g. Piatek and

Pinger 2015) over three time periods (1994-1996) to reduce error measurement error (Cunha and

Heckman 2008; Cunha et al. 2010; Cobb-Clark and Schurer 2013; Cobb-Clark et al. 2014).

One could further argue that an adult measure of ex ante control perceptions is a reflection

only of past health experiences. To date there is no empirical evidence that shows that past health

shocks cause negative control perceptions in adulthood. The only available empirical evidence

shows that in shorter time periods over four years, negative control perceptions of working-age

men do not respond to health shocks (Cobb-Clark and Schurer 2013). To ensure that adulthood

control perceptions are not merely reflections of childhood or adolescence health problems, I

further control the analysis on an averaged health measure also derived from years 1994-1996.

To control for regional variations in labor-market conditions and access to care, I control

for state fixed effects and state-by-year unemployment rates. Although not perfect proxies for

regional variations in access to care, these have been shown to sufficiently capture regional vari-
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ations in funding of care in Germany (see Eibich and Ziebarth 2014; Goepffahrt et al. 2015, for

arguments).3 Finally, a series of robustness checks will be conducted to shut off one-by-one al-

ternative mechanisms – differences in human capital, ex ante health, and intensity of the health

shock – that could equally explain heterogeneous labor-supply responses to health shocks.

The results show that men with negative versus men with positive control beliefs are on av-

erage 100% more likely to drop out of the labor force and work on average 12% less hours per

week the year after experiencing a health shock. These behavioral differences remain robust to

alternative sample and health-shock definitions. They are strongest for men from low socioeco-

nomic backgrounds, who do not have access to private health insurance, or who experience high

intensity shocks. Heterogeneous labor-supply responses are also observed for conscientiousness

and risk tolerance, traits that have been linked with willingness to invest and treatment com-

pliance in the previous literature. However, no heterogeneous responses can be found for any

other non-cognitive skills observed in my data, thereby excluding the possibility that control

perceptions just proxy some other unobservable heterogeneity not controlled for in the model.

An important conclusion to draw from these findings is that there are long-term labor market

benefits of a small set of non-cognitive skills in the advent of adversity, which in combination

could be powerful proxies of resilience.

The remainder of the paper proceeds in the following way. Section 2 lays out a theoreti-

cal model that explains the various mechanisms through which control perceptions can lead to

heterogeneous labor-supply responses to health shocks. Section 3 discusses the available data,

the choice of outcome and treatment variables, and summary statistics of the sample. Section 4

presents the econometric model and the tests I conduct to control for alternative mechanisms.

Section 5 presents the analysis and robustness checks. Section 6 discusses the findings. An online

appendix presents supplementary material.
3Germany’s hospital infrastructure is financed and regulated by the 16 German states. The average geographic

region is smaller than for instance the average US Hospital Referral Region. High density of physicians and hos-
pitals in international comparison, in addition to relatively low hospital occupancy rates of 80% (see Gesundheits-
berichterstattung des Bundes (2012), www.gbe-bund.de). Copayments for ambulatory or hospital services are,
with minor exceptions, moderate and equal for all insured (Goepffahrt et al. 2015, p. 2).
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2 Theoretical framework

Why would individuals with positive control beliefs reduce their work hours less in response to

a health shock than individuals with negative control beliefs? The following, brief theoretical

framework and numerical example serve to demonstrate the potential pathways and motivates

my identification strategy described in Section 4. To illustrate ideas, I build on Grossman’s Health

Investment Model (Grossman 1972), which allows individuals to invest in their health to off-set

yearly depreciations in health or a sudden increase in the depreciation rate (health shock). The

Grossman model embarks from an inter-temporal utility function and budget constraint. The

total time available for work is determined by the individual’s health status. Individuals choose

the hours they want to work on the basis of their perceived health - including perceptions of

bodily function and pain - which may imperfectly correlate with objective health. Perceived

health affects the perceived disutility from work.4 The Grossman model can be solved for labor

supply (see Schurer 2008, for an application in a two-period model). In a two-period model,

period-2 labor supply in the optimum (LS∗
2) depends on period-2 heath status (H2):

LS∗
2 = g(H2) (1)

Health status in period 2 is the outcome of past investment (I1), past health status (H1), and the

depreciation rate δ (0 < δ < 1). Investment enters the health function non-linearly to emphasize

that depreciation in health can directly be off-set by investment, and the return of the investment

can be boosted by a productivity parameter α:

H2 =
(
1−

δ

αI1

)
H1 (2)

In line with the original Grossman model, the productivity parameter α is a function of edu-

cation (E) and access to high-quality medical care (M) such that ∂α
∂E

> 0 and ∂α
∂M

> 0. Investment

leads to higher perceived health (∂H2

∂I1
> 0). Individuals work less hours when they perceive their

health to be too low to justify the effort to work (reductions in H2), i.e. ∂LS∗

∂H2
> 0. In the original

Grossman model, δ is assumed to be constant, but an increasing δ is discussed as a special case of
4For similar arguments in the context of malaria testing, perceived health and labor supply/productivity, see

Dillon et al. (2014).
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aging. For the purpose of this study, I let the depreciation rate increase exogenously to represent

a health shock. Health status in period 2 is reduced if the depreciation rate increases by one unit.

This framework points to a number of mechanisms that could explain why individuals with

positive control beliefs have a higher health capital in period 2, after the experience of a health

shock (↑ δ), and therefore supply more hours of work in period 2. Let θ represent beliefs that are

increasing in positive control perceptions. I will demonstrate the consequences of each alternative

hypothesis on labor supply with a numerical example. Let δ change from 0.4 to 0.5 to indicate a

0.1 unit health shock, H1 = 100 (%), I1 = 1 (Unit) and α = 1. Under each scenario, the value of

one of the four parameters will be changed.

Mechanism 1: Investment in health is a positive function of control beliefs (∂I(θ)
∂θ

> 0). Let

INEG
1 = 1 unit and IPOS

1 = 2 units. Health levels for the two groups will vary as follows:

HPOS
2 =

(
1−

0.5

2

)
100 = 75, (3)

HNEG
2 =

(
1−

0.5

1

)
100 = 50. (4)

As a consequence, individuals with positive control beliefs will experience better (perceived)

health in period 2, and therefore experience lower disutility of work, and will provide more hours

of work than individuals with negative control beliefs. The tendency to invest in health to coun-

terbalance adverse health events is amain characteristic of resilient behavior. It can be understood

as the ability and the effort to adhere to strict treatment regimes and to establish healthy habits.

Evidence on myocardial infarction survivors suggest perceptions of personal control are linked

with a better adherence to recommended medication and behavioral regimes and a higher rate of

returning to work following the recuperative period (See Strudler Wallston and Wallston 1978;

Fitzgerald et al. 1993, for an overview of the literature). Previous research has also documented

that individuals with positive control beliefs invest more in their health (Cobb-Clark et al. 2014;

Chiteji 2010).

Mechanism 2: The productivity of health investments is higher for individuals with higher

levels of education or better access to high-quality health care, and it is individuals with posi-

tive control beliefs who have higher levels of education and access to health care (∂α(E(θ)
∂E

∂E
∂θ

>
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0,
∂α(M(θ)

∂M
∂M
∂θ

> 0). Therefore, individuals with positive control beliefs are more effective in

transforming the same level of investment into health outcomes than individuals with negative

control beliefs. Let IPOS
1 = INEG

1 = 1 unit, and αPOS = 1 and αNEG = 0.75. Health levels for

the two groups will vary as follows:

HPOS
2 =

(
1−

0.5

1× 1

)
100 = 50, (5)

HNEG
2 =

(
1−

0.5

0.75× 1

)
100 = 25. (6)

Once again, the implication is that despite the same amount of investment, perceived health will

be lower in period 2 for individuals with negative control beliefs than for individuals with posi-

tive control beliefs, because they differ in their access to high-quality medical care or information.

This would lead to an observationally equivalent outcome as suggested bymechanism 1, although

the underlying mechanism is different. Previous research has shown that individuals with posi-

tive control beliefs invest more in their own education (Coleman and Deleire 2003; Hadsell 2010)

and in the education of their children (Lekfuangfu et al. 2014), and adolescents’ control beliefs are

associated with parental socioeconomic status (Schurer 2015; Anger and Schnitzlein 2015). Lund-

borg et al. (2015) show evidence on the education-related heterogeneity in the response to health

shocks using Swedish administrative data, although the authors do not discuss the mechanisms.

Mechanism 3: Control beliefs are positively associated with ex ante health (∂H1(θ)
∂θ

> 0) and

therefore individuals with positive control beliefs have better health at the outset. Let HPOS
1 =

100 and HNEG
1 = 50. The health outcomes in period 2 for the two groups are:

HPOS
2 =

(
1−

0.5

1

)
100 = 50, (7)

HNEG
2 =

(
1−

0.5

1

)
50 = 25. (8)

Hence, individuals with positive control beliefs will experience better health in period 2 than

individuals with negative beliefs, even in the presence of the same health investment, the same

access to high-quality care, and the same health shock. This mechanism raises the important

concern that control beliefs measured in adulthood may be a proxy for long-term health prob-
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lems. Adults with negative control beliefs may have experienced early-life health problems that

cause adulthood negative control beliefs. There is evidence in the literature that control beliefs

correlate with health status assessments in adulthood (e.g. Mackenbach et al. 2002; Klonowicz

2001), yet Cobb-Clark and Schurer (2013) have shown that persistent health shocks and chronic

pain do not significantly boost negative control beliefs in adulthood (ages 25 to 60). This evidence

does not invalidate the possibility that early life health conditions shape an individual’s control

beliefs. Some evidence suggests that children from low socioeconomic status (Schurer 2015) or

unstable families (Anger and Schnitzlein 2015) are more likely to express negative control beliefs

by adolescence. This evidence, in combination with evidence on social inequalities in child health

outcomes (Pillas et al. 2014), points to the possibility that adulthood control beliefs may reflect

an unhealthy start into life. Hence, despite the same increase in the health depreciation rate, in-

vestment, and productivity, individuals with negative control beliefs will have a lower absolute5

level of health in period 2 than individuals with positive control beliefs.

Mechanism 4: Positive control beliefs are associated with lower depreciation rates (∂δ(θ)
∂θ

< 0).

If individuals with negative control beliefs experience an episode of ill health that increases their

health depreciation rate, then this shock would occur at a higher overall level of depreciation,

while the change would occur at a lower level of depreciation for individuals with positive control

beliefs. If there is a concave relationship between the depreciation rate and positive control beliefs

(∂δ
∂θ

< 0; ∂2δ
∂θ∂θ

< 0) - which is a reasonable assumption because δ is upward bounded at 1 - then

individuals with positive control beliefs will have a higher health status in period 2, even in the

presence of the same health investment, initial level of health, and productivity. Let’s assume

the health shock increases δ for both groups by 0.1 units, but the long-term δPOS = 0.1 and

δNEG = 0.4, hence δNEG = 0.4 + 0.1 = 0.5 and δPOS = 0.1 + 0.1 = 0.2, which results in the

following two health outcomes in period 2:

HPOS
2 =

(
1−

0.2

1

)
100 = 80, (9)

5Note that individuals with higher levels of health in period 1, who experience an increase in the health depre-
ciation rate, experience a larger marginal decline in health in period 2. However, in absolute terms, the health level
in period 2 is still higher for individuals who were in better health in period 1, and therefore they can provide more
hours
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HNEG
2 =

(
1−

0.5

1

)
100 = 50. (10)

If individuals with positive control beliefs experience weaker health shocks, even in the presence

of the same health investment, ex ante health and access to care, then they will experience better

health in time period 2. To the best of my knowledge, there is no empirical evidence that would

support this hypothesis, although theoretically it is possible.

While mechanism 1 is the mechanism I seek to explicitly test for, all four mechanisms lead to

an observationally equivalent outcome. Each mechanism predicts that individuals with positive

control beliefs will have a better health status in time period 2 after experiencing a health shock,

and therefore provide more hours of work, although the underlying causes are different.6 Thus,

it is important to choose an identification strategy that can separate out the heterogeneous labor-

supply responses to health shocks due to differences in investment that result from differences

in control beliefs (mechanism 1), from heterogeneity in access to high-quality care or informa-

tion (mechanism 2), heterogeneity in initial health (mechanism 3), or heterogeneity in the health

depreciation rates (mechanism 4).

Since at no point in the empirical analysis will I be able to observe the actual health investment

behavior of individuals who experienced a health shock, I will show that mechanism 1 is likely

by proof of exclusion by systematically turning off mechanisms 2, 3, and 4. Proof by exclusion of

alternative mechanisms is valid under the assumption that the above theoretical model captures

all relevant channels via which control beliefs affect health and labor supply.7

6Note, more complex scenarios can be thought of, e.g. that each of δ, I1, H1, α depend on θ. If individuals with
positive control beliefs are simultaneously investing more in their health, start out with better perceived health,
experience smaller health depreciations and have better access to high-quality care, then the differential responses
to a health shock will be even larger.

7Some may argue that there is a fifth mechanism, namely that it is unobserved ability that drives labor supply
decisions after the experience of a health shock. Such a competing hypothesis was discussed in Caliendo et al. (2014)
and Coleman and Deleire (2003). In both studies, the alternative hypothesis is that for highly intelligent individuals
jobs will arrive at a higher rate, and therefore highly able individuals are more likely to find a job. Unlike Coleman
and Deleire (2003) and Caliendo et al. (2014) who model the heterogeneous behavior of high school students and the
unemployed, respectively, I focus on individuals who are full-time employed and hence do not apply for a (new) job.
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3 Data, identification strategy, and variable definition

3.1 The German institutional context

Germany provides an ideal setting to test the medium-term responses to health shocks, because

Germany’s generous social security system ensures almost universal access to health care and

allows individuals to stop working, or reduce hours of work, when experiencing a debilitating

illness while maintaining a regular income flow for at least 1 1/2 years thereafter. In the case

of illness, German employees can rely on income provided by various insurance funds.8 The

sickness funds give cash benefits to their members during the first six weeks of sickness while

employers pay 100% of the employee’s last net income. Afterwards, sickness funds continue to

pay for up to 78 weeks 80% of the last net income (Johnson and Stoskopf 2010).

In addition, medical health care is universally provided independent of employment status, in

contrast to the United States, where health insurance is mainly tied to the employer. The latter

implies that individuals may have to continue to work in case of illness, just to be able to afford

health care (Bradley et al. 2007). This does not mean that employees do not have private health

insurance, in fact 10% of the population have private cover in Germany. Private health insur-

ance coverage is less strictly regulated and subject to individual underwriting with risk-based

premiums. It is especially attractive to healthy and high-income individuals, but the evidence is

mixed with respect to whether there is positive or negative selection into private health insurance

(Schmitz 2011). More importantly, Germany has the advantage of a highly homogeneous health

care system. Co-payments for ambulatory or hospital services - with minor exceptions - are small

and equal for all insured. There are regional differences in base rates, but these differences can

be controlled for by regional fixed effects or measures of local economic activity (see Goepffahrt

et al. 2015).

Even though the German Termination Protection Act allows employers to lay off employees

who are on long-term sick leave, employersmust abide with strict notice periods of sevenmonths.

Notice periods - independent of the reason of dismissal - increase with seniority of the employee.

For instance, employees who have worked for 15 years in the same company enjoy a six-month
8The German Social Security System consists of health insurance, home care and nursing insurance, pension

insurance and unemployment insurance and it is mandatory to all employees.
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notice period. Very strict guidelines apply also for workers with disabilities who enjoy special

protection.9 To this extent, short-term changes in employment due to illness-related layoff are

unlikely to be observed in the time-frame of this analysis. Thismeans that the German case allows

me to study the medium-term effects of ill health on labor supply that result from individual

choice rather than from budget constraints or health-related lay offs.

3.2 Identification strategy

The analysis is conducted with data from years 1994-2012 extracted from the German Socio-

Economic Panel (SOEP Data Release 1984-2012). The SOEP is a longitudinal survey of private

households established in West Germany in 1984, which extended its sample after Germany’s

reunification to include the new Bundeslaender.10 In its first year the study included 5,921 house-

holds from which 12,245 individuals from age 17 onwards were successfully interviewed ("Ger-

manWest" and "Foreigner" sample). Further samples were added in consecutive years fromwhich

my study uses the "German East" (1990), "Immigrant" (1994/1995) and the "Refreshment" (1998)

samples. The SOEP achieved a reasonably high first wave cross-sectional response rate of 64.5%

and has an average longitudinal response rate of 92.2% (Wagner et al. 2006).

My identification strategy relies on selecting a sample of men from the SOEP with the follow-

ing characteristics: (1) complete data is available on ex ante positive control beliefs and ex ante

health status, both measured as average over three time periods between 1994-1996; (2) aged be-

tween 25 and 60 years between 1997 and 2012; (3) admitted to hospital for at least 10 nights at

some point in time between 1998 and 2011; and (4) being in good health and in full-time employ-

ment one year before experiencing an episode of ill health. Starting in 1997, I draw three-year

intervals repeatedly from the data which I use to condition the sample on healthy and fulltime

employed men in period t − 2, but who experience a health shock in the second time period of

the interval (t − 1). I then explore whether labor supply changes in time period t and whether

this change is linked to negative control beliefs. In total, there are 14 three-year intervals (See
9For an overview of the German Employment Law, see http://www.iclg.co.uk/

practice-areas/employment-and-labour-law/employment-and-labour-law-2016/
germany and http://www.ilo.org/ifpdial/information-resources/
national-labour-law-profiles/WCMS_158899/lang--en/index.htm.

10The data used in this paper was extracted from the SOEP Database provided by the DIW Berlin
(http://www.diw.de/soep) using the Add-On package SOEP Info for Stata(R). It uses the 95% Scientific sample ob-
tained from Cornell University.
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Table A.1 in the Appendix).11 Some individuals experience multiple hospital admissions during

1998 and 2011.

Importantly, I consider the labor-supply responses of men only due to the difficulty in mod-

eling female labor supply, and separating out health shocks and labor-supply responses from

pregnancy experiences. The age restriction of my sample to men who are no younger than 25

years and no older than 60 years of age at any point within the three-year intervals is chosen

to more cleanly identify health-related labor-supply responses. The upper bound is chosen to

ensure that short-term labor supply decisions are not driven by retirement decisions, which de-

pend on superannuation availability and savings. In fact, there is no case of retirement in the

estimation sample. The lower bound is chosen to ensure that short-term labor-supply decisions

are not driven by frequent transitions in-and-out of education.

Between 1994 to 1996, there are 6930 men present in at least one of the years. Out of these,

6703 or 96.6% have at least once information available on control perceptions and health status.

By restricting the sample to be at least 25 years of age from 1997 onward and not older than 58

years in 1997, another 24.4% of the sample is lost. Of the remaining 5065 individuals, 89% provide

at least once information on whether they have experienced a health shock, leaving a sample

of 4510 individuals. Another 11.7% of individuals are lost because they do not have information

available at least once about their labor force status. Restricting the analysis on individuals who

are not in bad or poor health in period t − 2 and who are employed generates a final sample

of at least 3730 individuals.12 Of these 3730 individuals, 649 experienced an episode of ill health

that I define as a health shock (10 nights at hospital). Alternative definitions of a health shock

constructed using self-assessed health measures yields a sample of 771 individuals. About 16%

of these individuals remain in the sample until 2012 (T=16), and the median length of stay in the

sample is seven years. 117 individuals ultimately drop out of the sample due to death, 31 of which

have experienced a health shock.

Because of the specific sample definitions, health and labor-supply related attrition from the
11This strategy of constructing three-year intervals for the analysis is adapted from García-Gómez (2011) and

García-Gómez and López-Nicolás (2006).
12Most basic control variables are available for this sample. I flag missing observations for the following control

variables: Big-Five personality traits and risk tolerance, years of education, sector and industry. When conditioning
the sample on no missing values of the Big-Fiver personality traits and risk tolerance, that were measured in 2005,
the treatment effects of interest would be stronger.
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panel may be of concern. I tested for the possibility of systematic attrition, and conclude that my

sample selection - at worst - is likely to downward bias my estimates of interest. Estimating a

probit model of the probability of dropping out of the sample at some point in time, I find that

men are more likely to drop out of the sample who had weaker ex ante health and labor force

attachment, and who have ex ante negative control perceptions (marginally significant). Men

who experienced a health shock are almost 200% more likely to dropout of the sample than men

who did not experience a health shock (see Table A.2, Online Appendix). There are no statistically

significant interaction effects between health shock and ex ante control perceptions.

If these are also the individuals who would experience the strongest health deteriorations in

the future and the weakest labor force attachment, then this would flatten the negative relation-

ship between changes in health and labor supply responses for individuals with negative control

beliefs. As a consequence, the difference in labor-supply responses at any level of health deteri-

oration between men with positive and negative control beliefs would be artificially reduced.

3.3 Variable definitions

3.3.1 Labor supply

The many studies that investigate the effect of ill health on labor market outcomes find that a

strong negative impact operates through employment and work hours rather than wages (Bound

et al. 1999; Smith 1999; Riphahn 1999; Disney et al. 2006; Lindeboom and Kerkhofs 2009). There-

fore, I will use in the analysis four different labor-supply outcome measures: (1) a continuous

variable of weekly hours worked including zero; (2) a binary indicator of whether the individual

has dropped out from the labor force, but not due to retirement; (3) a binary indicator whether the

individual works part-time; and (4) a binary indicator of whether the individual is unemployed.

Part-time employment takes the value 1 if the individual works 20 hours or less per week (exclud-

ing zero hours).13 On average, individuals in the full sample work 42 hours per week, while 1.42%
13This is an arbitrary cut-off, but in Germany there is no uniform definition of part-time work. An employee

is considered to be part-time employed if his or her weekly working hours fall short of the fixed working hours
arrangement of the particular industry and business. For instance, if the fixed working hours arrangement is 38.5
hours per week, then someone working 35 hours per week is considered to be working part-time. According to
the Working Hours Legislation (Paragraph 3 ArbZG), the upper limit of work-hours is eight hours per day, hence
someone who works 20 hours per week or less could work at maximum 2 1/2 days during the week. For simplicity,
however, the measure will be referred to as part-time work.

14



drop out of the labor market, 3.4% become unemployed, and 6.4% work part-time at some point

in time. In contrast, average labor supply in the years following the health shock is significantly

lower for the 649 men who experience a health shock (see Table 2).

3.3.2 Health shock

To assess the effect of health on labor supply it is common in the literature to use a binarymeasure

of a health shock. Smith (1999) and Smith (2005) argue that unanticipated, or at least significantly

large, changes in health could serve as exogenous variation in health that aids identification of

a causal impact of health on labor supply. I will follow this method, but instead of constructing

the health shock from self-assessed health data,14 I use information on hospital admissions which

indicate acute health problems, a strategy that was also used in García-Gómez et al. (2013).15 My

health-shock measure takes the value 1 if the individual was admitted to hospital for 10 nights

or more, which represents more than two sample standard deviations, and 0 otherwise (2.3%, 649

individuals). In the sample, the largest number of hospital admissions is 140 nights, but only 32

individuals exceeded 50 nights (Figure A.1, Online Appendix). In a robustness check, I further

explore alternative health shock definitions such as changes in hospital admissions from one

year to the other by more than 2 sample standard deviations, an increase in total health care

utilization by 21 visits (> 2 sample standard deviation), or a drop in self-assessed health by two

or more points (> 2 sample standard deviations).

In Germany, as in many OECD countries, patients have little influence over the number of

nights they can spend in hospital for treatment, especially since the introduction of diagnosis-

related groups (DRGs)-type payment system in 2000, which classifies patients into groups ac-

cording to the consumption of resources required to treat their condition. Optimally, I would use
14E.g. Riphahn (1999), García-Gómez (2011), and García-Gómez and López-Nicolás (2006) construct a health shock

from subjective health data, which will be considered in a sensitivity analysis. However, it is not the preferred
solution in my setting to use self-assessed health for the construction of the health shock, because large variations in
self-reports of health have been linked to variations in the personality trait of locus of control (Klonowicz 2001). In
such a case, individuals with negative control beliefs would report a health shock despite having the same ‘objective’
level of health as individuals with positive control beliefs and thus would not be more likely to change their labor
supply than a comparable positive-controlled individual. An optimal health shock measure would be a purged health
measure, which is the predicted value from an estimated model of self-assessed health that controls for specific
medical conditions (e.g. Bound et al. 1999; Disney et al. 2006; García-Gómez et al. 2010), which is not available in
SOEP.

15García-Gómez et al. (2013) define their health shock in terms of acute hospital admissions of at least three days.
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evidence based on diagnoses that underlie the health shock, but this information is not compre-

hensively available in my data. Since the number of nights spent at hospital is highly regulated,

I can provide an approximate idea of what type of illnesses or injuries my health shock mea-

sure proxies. Data on German in-patient length-of-stay by diagnosis provided by the European

Commission and OECD suggest that diseases of the circulatory system require ten days, of the

respiratory system require less than nine days, of the muskoskeletal system and connective tissue

require 11 days, and lung cancer 12 days. More severe conditions entail longer spells at hospi-

tal. For instance, obstructive pulmonary disease require on average 120 days, acute myocardial

infarction 105 days, asthma 80 days, and cerebrovascular disease 270 days.16

In addition, the SOEP data provide for a small sample of individuals information on health

diagnoses (nine health conditions) that was collected in two special modules in 2009 and 2011

only. I regress each of the health conditions on the lagged health shock measure and control for

five quantile indicators of negative control beliefs (base: positive control), age-group indicators

and private health insurance (Table A.3 Online Appendix). Individuals who spent at least 10 more

nights at hospital last year are 183% more likely to be diagnosed with cancer, and between 112%-

190% more likely to be diagnosed with cardiovascular disease, diabetes, or depression, while no

effect is found for asthma, stroke, or megrim. Generally, there is no link between these health

conditions and control perceptions with two important consequences. Men with negative con-

trol beliefs are almost 100% less likely to suffer from cancer relative to men with positive control

beliefs, but 67% and 100% more likely to suffer from cardiovascular disease and depression, re-

spectively.

From these data, one cannot say with certainty whether any of these illnesses are more or

less under the actual control of the individual. Cancer, cardiovsacular disease, and depression are

the most common and most costly chronic diseases in OECD countries. Some cancer can be well

managed if diagnosed in early stages, and treatments are more effective if the patient exercises

and eats healthily. Similarly, cardiovascular disease can be managed through life-style changes

such as healthy diets and exercise. However, it would be purely speculative to say that any of these

conditions are more or less endogenous to the behavior of the individual, or that individual health
16Data collected between 1998 and 2000 are accessible at: www.ec.europa.eu/health/ph_

information/dissemination/echi/echi_4_en.htm#37 and www.euphix.org/object_
document/o5579n27121.html.
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investments are more effective in let’s say in cardiovascular disease management versus cancer

management. All we can say is that the main health shock proxy is associated with important

chronic illnesses in my data.

3.3.3 Control beliefs

In 1994, 1995, and 1996, the SOEP included a personality questionnaire that contains eight of

the original 23-items of the Locus of Control Scale developed by Rotter (1966) (See Table 1 for

item description). The scale assesses the extent to which one regards opportunities in life as be-

ing under one’s control (positive control beliefs) versus being chance-determined, incidental, and

unpredictable (negative control belief). Participants were asked to indicate their agreement with

each of the eight items on a scale ranging from 1 (applies completely) to 4 (does not apply). The

answers to items Q1, Q3, and Q6 were reversed so that high values of each item indicate external

control tendencies. An exploratory factor analysis reveals that all eight items load unambiguously

on one principal factor. I dropped item Q3 from the overall inventory as its exclusion enabled

the internal consistency, measured by Cronbach’s α (Cronbach 1951), to be improved from 0.726

to 0.739.17 To achieve higher construct validity, I predict this first principal factor from factor

analysis in each year.18 Using a predicted first factor as index of negative control beliefs allows

each item to contribute to the index with a different weight. To construct a time-invariant mea-

sure of control beliefs, I average the score for each individual across 1994-1996. Averaging across

repeated measures reduces the likely measurement error in self-assessed non-cognitive skills (see

Cobb-Clark et al. 2014).19 A binary measure of negative control beliefs, that will be used in some

of the descriptive analysis, is defined to take the value 1 if the index is greater than the 75th

17Cronbach’s α measures how closely related are the eight items as a group by considering the proportion of the
average inter-item covariance in the total variation in the data. Higher levels of α are usually an indicator for one
underlying concept. A level of 0.7 or above is usually accepted as satisfactory. Heineck and Anger (2010) also use
SOEP data and calculate Cronbach α reliability measures for, among others, locus of control data measured in 2005.
They exclude Q1, Q4, Q6, and Q7, however, a principal component analysis of Q2, Q3, Q5, Q8, Q9, and Q10 yields
two factors upon which all remaining questions load and the resulting Cronbach’s α is .62, which is significantly
lower than the Cronbach’s α obtained when excluding Q4, Q6, and Q9.

18Similar definitions have been used in Cobb-Clark et al. (2014); Piatek and Pinger (2015). Cobb-Clark and Schurer
(2013) compared the performance of the factor-analytically derived measure against a measure that simply sums up
all items, which has been used in e.g. Caliendo et al. (2014). The method for index aggregation does not affect the
estimation results.

19Cobb-Clark and Schurer (2013), Cunha and Heckman (2008) and Cunha et al. (2010) emphasize the importance
of measurement error in non-cognitive skills in their analysis of the determinants and the evolution of non-cognitive
skills in early childhood and adolescence.
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percentile, and 0 if it is smaller or equal to the 75th percentile (positive control beliefs). The 75th

percentile cut-off value takes into account the left-skewed nature of external control tendencies.20

Choosing ameasure of control beliefs that is averaged over three time periods and is measured

strictly before all outcome and shock measures are observed reduces the risk of endogeneity in

control beliefs. Even so, endogeneity in control beliefs may not be a large problem. Cobb-Clark

and Schurer (2013) investigated in detail whether control perceptions respond to unanticipated

life events. They conclude that for a working-age population control perceptions are surpris-

ingly stable. At most, individuals change their answers by three points on a scale from 7 to 49.

These small changes cannot be explained by life events, and most importantly, they cannot be

explained by prolonged experiences of illness. Similar results on the stability of locus of control

beliefs in adulthood are found for longer time periods using British cohort data (Schurer 2015).

However, Schurer (2015) also finds that childhood socioeconomic status and parenting behavior

are significant predictors of persisting negative control beliefs in adolescence. Since childhood

socioeconomic status determines health outcomes over the lifecycle, it could be that adulthood

control beliefs capture either socioeconomic status or long-term health problems.21 I will explic-

itly deal with this possibility in the empirical analysis.

3.4 Descriptive analysis

Before moving on to outline the econometric models and the full data analysis, I will describe in

this section the changes in labor supply, health care utilization and health outcomes for my main

estimation sample by differences in control beliefs. A first glance at the SOEP data reveals that

male labor-supply responses to health shocks do indeed differ by control beliefs. Figure 1 shows

the average work-hours (and their 95% confidence intervals) separately for men with positive

(solid line) and negative control beliefs (dashed line) over six time periods: two time periods before

the health shock occurred (t − 3, t − 2), during the health shock (t − 1), and three time periods

after the health shock occurred (t, t + 1, t + 2). The sample is conditioned on men who were in
20There is no generally accepted threshold to categorize individuals into positive or negative control beliefs.

Caliendo et al. (2014) use the sample mean as a cut-off value.
21It is further possible that control beliefs measured as an average across 1994-1996 are the result of age-specific

variations in non-cognitive skills. In a robustness check, I adjusted the control beliefs scores by age (e.g. Heineck
and Anger 2010). None of my conclusions change by using the age-adjusted measure, likely because in my sample
control beliefs do not co-vary by age (correlation coefficient: 0.06). These results are provided upon request.
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good health and worked full-time in period t− 2 (N=649). There are two important conclusions

to be drawn from this figure. First, all men reduce their work hours during and following the

year of the health shock (t− 1). This is a standard finding in the literature and holds for various

age groups (Crichton et al. 2011; Disney et al. 2006; Wing Han Au et al. 2005; Bound et al. 1999;

Riphahn 1999; García-Gómez et al. 2010; García-Gómez and López-Nicolás 2006). Second, men

who expressed negative control beliefs many years before the experience of a health shock are

more likely to experience stronger reductions in hours worked than men who expressed strong

positive control beliefs. In this example, menwith negative control beliefs work only 32 hours per

week, while men with positive control beliefs work 38 hours, a statistically significant difference

of 6 hours on average, in period t+ 3.

Figures 2(a) to 2(d) describe in a similar way the evolution of doctor visits, number of nights

spent at hospital, combined doctor visits and nights spent at hospital, and self-assessed health

before and after the experience of a health shock by control beliefs. Again, dotted lines represent

the 95% confidence interval bands. Before the health shock occurs, individuals with negative and

positive control beliefs look very much alike in terms of health-care utilization and health status.

Both groups, on average, visit a doctor about ten times a year, and spend less than two nights in

hospital.22 Both groups are also on average in good health before the health shockwith an average

health score of 2.5, which indicates good health or better.23 In the year of the health shock (t−1),

by definition both groups increase their nights spent at hospital to 19 (positive control) and 22

(negative control) (Figure 2(b)), and their annual doctor visits to 18 and 23 visits, respectively

(Figure 2(a)). These differences in health care utilization by control beliefs are not statistically

significant at the 5% level or better. A year after the health shock both groups reduce their health

care utilization to the baseline level, and no statistically significant differences emerge.

However, the evolution of health during and after the health shock is significantly different

between the two groups (Figure 2(d)). During the health shock, men with negative control beliefs

rate their health at 3.2, while men with positive control beliefs rate their health at 2.9, a difference
22One could argue that my sample is already chronically ill before the health shock, because its members spend

already two nights in hospital and consult a doctor around ten times per year. However, health care utilization of
my sample members is in line with the average German health care utilization. Data from the European Community
Household Panel (1996) reveal that on average Germans consult a GP 5 times a year, a specialist 3 times a year, and
spend 2 nights in hospital (Van Doorslaer and Masseria 2004). Further, for my research study it is important that
men with positive and negative control beliefs do not differ in their pre-shock health care utilization.

23The health scale is increasing in ill health and ranges between 1 (excellent) and 5 (poor).
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that is statistically significant at the 5% level. Importantly, three years after the experience of the

health shock, the perceived health of men with negative control beliefs is still significantly worse

than the perceived health of men with negative control beliefs (2.8 versus 3.1).

Table 2 shows the means of observable characteristics for men with positive (column 1) and

negative control beliefs (column 2), and the p-values of the hypothesis test of no difference in

means (column 3). Men with negative control beliefs have significantly lower levels of education

(11 versus 13 years) and are significantly less likely to have private health insurance (4% versus

12%). This suggests that mechanism 2 could explain the heterogeneous labor-supply responses.

It is also true that men with negative control beliefs have slightly lower levels of self-assessed ex

ante health (2.3 versus 2.5), which would be evidence of mechanism 3. Finally, men with negative

control beliefs are more likely to cluster in the higher end of the hospital night distribution, which

is evidence for mechanism 4. In Figure 3 I display the relationship between negative control

beliefs and the number of nights spent at hospital (bivariate kernel estimate with 95% confidence

interval). There is no systematic relationship between control beliefs and the number of nights

spent at hospital up until 19 nights. However, men with negative control beliefs are significantly

more likely to have spent 20 or more nights at hospital (20-24 nights, 25-34 nights, and 35+ nights;

N=195).

Table 2 also presents summary statistics of important determinants of labor supply by positive

and negative control beliefs. Individuals with negative control beliefs are significantly less likely

to work in professional and technical occupations, which is also reflected in a lower wage in

period t − 2. They also differ significantly in other non-cognitive skills. They tend to be less

risk tolerant, extraverted, and open to experiences, but they tend to be more neurotic. They also

have accumulated more unemployment experience up until period t−2 (0.4 versus 0.8 of a year).

They are less likely to work in very large companies, and are more likely to be a foreigner. These

descriptive statistics emphasize that the main estimation strategy must account for the remaining

differences in observable characteristics between individuals with negative and positive control

beliefs.
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4 Estimation methods

4.1 Modeling labor supply

To estimate the heterogeneity in the response to health shocks, I specify two separate models:

(1) a tobit model in which weekly work hours - including 0 - is the outcome variable (censored

from below at 0); and (2) a probit model in which a dummy variable that captures whether the

individual has dropped out of the labor force is the outcome variable.24 In both cases, I estimate

the reduced form equation that is commonly used in the literature, and that can be directly derived

from Eqs. (1) and (2). The estimation model will be illustrated for a probit model of the probability

of dropping out of the labor market, that is similar to the specification in Riphahn (1999). Let Y∗
it

be the true, but unobserved propensity to drop out of the labor force:

Y∗
it = α0+α1C̄Bi+α2HSit−1+α3C̄Bi×HSit−1+γH̄i+NCS ′

iµ+X ′
itβ+Z ′

it−2ϕ+εit. (11)

Individual i is observed in time period t for t ∈ {1997, . . . , 2012}. In the data, a binarymeasure Yit

is observed which takes the value 1 if Y∗
it > 0, and 0 otherwise. The parameter α0 is the average

probability of dropping out of the labor force and α1 represents the deviation from this mean

by negative control beliefs (C̄Bi). The variable HSit−1 is a binary indicator of the health shock,

lagged by one time-period to ensure that changes in health are not the result of contemporaneous

work conditions. Importantly, the health shock also enters the equation as an interaction with

the continuous measure of control beliefs (C̄Bi×HSit−1). The parameter α2 measures the effect

of the health shock on the probability of dropping out of the labor force for an individual with

average control beliefs (C̄Bi = 0), whileα3 indicates whether this effect differs by control beliefs.

The main hypothesis of interest is H0 : α3 = 0 against the one-sided alternative Ha : α3 > 0.

The interaction effect is expressed as a movement from the lowest to the highest 10th percentile

of negative control beliefs, which is a common strategy used in the literature to represent the

effects of non-cognitive skills on an outcome of interest (e.g. Heckman et al. 2006).

To be able to interpret the moderating effect of α3 as causal, it is important to control for

a variety of observable characteristics as suggested by the theoretical model in Section 2. Most
24In the empirical section, I will also estimate the probability of being registered as unemployed and working

part-time (6 20 hours, excluding 0).
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importantly, I condition the analysis on ex ante trends in underlying health, where H̄i is a mea-

sure of average health between 1994 and 1996. The parameter γ measures the influence of ex

ante health on labor supply. The vectorNCS ′
i includes measures of other non-cognitive and cog-

nitive skills that are likely to influence labor-supply decisions such as the Big-Five personality

traits (Agreeableness, Conscientiousness, Extraversion, Neuroticism, Openness to Experience),

willingness to take risks, and a measure of cognitive ability (Symbol digits modality tests) that

were used in the same way by Heineck and Anger (2010).

The vectorX ′
it captures personal characteristics such as age (age groups in five-year intervals),

private health insurance, years of education, being a foreigner, marital status, number of children

below the age of 16, and the partner’s labor force and health status. It also includes proxies for

current labor market conditions such as the state-by-year unemployment rates,25 state fixed ef-

fects, and time fixed effects that may affect contemporaneously the probability of leaving the

labor market. State fixed effects and local unemployment rates in combination are also capturing

regional variations in health care expenditures that have been reported for Germany (see Goepf-

fahrt et al. 2015; Eibich and Ziebarth 2014, and references therein) and that may influence access

to high-quality care. Z ′
it−2 is a vector of variables that proxy the individual’s productivity po-

tential, life-time earnings and benefit entitlements when employed (cumulative unemployment

experience since working, prior wage, size of firm, occupational status, and tenure and tenure

squared at firm of employment).26 The error term εit is assumed to be normally distributed with

a mean 0 and a variance of 1 (binary probit). Due to repeated observations across time, the stan-

dard errors are clustered by individual identifiers.

For a better overview of which assumptions apply to identify a causal interaction effect, the

identification strategy is graphically depicted in Fig. 4.27 The parameters of interest, α2 and α3,

will be consistently estimated with Maximum Likelihood under the following assumptions: (1)
25Data on local unemployment rates are taken from the German Labor Agency Statistics and merged to the SOEP

data on the basis of state and year identifier. These data are accessible at: http://www.pub.arbeitsamt.
de/hst/services/statistik/detail/z.html.

26These measures are noisy proxies of what Blundell and MaCurdy (1999) stress should be included in labor
supply models such as life-time wages, non-labor income (property income), and initial wealth. The authors admit
that usually these are not included in survey data or measured with error. However, in my empirical specification,
main interest is not to estimate consistently wage elasticities, but the effect of health and locus of control.

27This depiction is adapted from Decker and Schmitz (2015), who use a similar identification strategy with SOEP
data.
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C̄Bi andNCS ′
i pick up all relevant individual-specific heterogeneity that correlates with episodes

of ill health and labor supply; (2) conditional independence, which means that all remaining

differences in the propensity to experience an episode of ill health and to drop out of the labor

market are adequately accounted for by observable characteristics; and (3) a correct functional

form is specified.

4.2 Testing for alternative mechanisms

As outlined in Section 2, there may be three alternative mechanisms which could explain a signif-

icant interaction effect between control beliefs and ill health on labor supply. I will address each

mechanism one-by-one in a series of robustness checks to the benchmark model. To control for

mechanism 2, I will first re-estimate Eq. (11) separately by educational qualification groups. Ed-

ucational groups are defined according to Germany’s three-tiered education system. This system

separates students at age 10 into university school pathways, a process often blamed for creating

an education system that allows for little upward mobility (See Heineck and Riphahn 2009, for an

overview). Children who go through the minimum schooling pathway (Hauptschule) will end up

mainly in manual labor occupations, whereas individuals going through the intermediate school-

ing pathway select into administrative, low-level public sector, and service occupations, although

some can go on to obtain a degree from a polytechnic university. Students who go through the

highest level of schooling (Gymnasium) usually go on to university and take up managerial, pro-

fessional or technical occupations. Therefore, three groups are distinguished: Minimum school-

ing (N=265), intermediate schooling (N=245), and university education (N=111).28 If the buffering

effects of control beliefs reflect a general principle, not just an occupation- or education-specific

phenomenon, then we should observe heterogeneity in the treatment effect by control beliefs

within each group. Second, I will also re-estimate Eq. (11) using a sample of men who have

public health insurance only (N=393), excluding the possibility that heterogeneous labor-supply

responses are caused by access to higher-quality health care through private health insurance.

Mechanism 3 suggests that negative control beliefs are associated with lower levels of ex ante

health. I have controlled for this in the benchmark specification by conditioning the sample on
28The estimation sample is reduced from 649 men to 621 men because the the variable describing educational

pathways is not available for all sample members.
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healthy men in period t-2 and by controlling for long-term, ex ante differences in health. To go

a step beyond these controls, I additionally conduct the following sample restrictions: (1) men

of age 56 or younger (N=525), because older age is associated with frail health; (2) men without

chronic illnesses by dropping all men who experienced multiple health shocks (N=448); (3) men

who survive the health shock (N=618); and (4) men who were already in good health ex ante

(N=615).

According to mechanism 4, men with negative control beliefs experience worse episodes of

ill health, and this could suggest that their health is worse in the next time period. To deal

with belief-related heterogeneity in the intensity of the health shock, I re-estimate Eq. (11) by

distinguishing seven intensities of the health shock: (1) 1-4 nights at hospital (N=560);(2) 5-9

nights (N=555); (3) 10-14 nights (N=333); 15-19 nights (N=85); 20-24 nights (N=89); 25-34 nights

(N=69); and 35 or more nights (N=73). Each of these intensity indicators enters the regression

model in levels and as an interaction with negative control beliefs.

Finally, one could argue that control beliefs capture other individual-specific heterogeneity

that the theoretical model does not capture. To test for this possibility, I re-estimate Eq. (11), but I

interact the health shock - sequentially - with one of the above defined non-cognitive skills (Risk

tolerance, Conscientiousness, Extraversion, Agreeableness, Openness, Neuroticism). If control

perceptions capture differences in investment behavior, then I should find significant interaction

effects with non-cognitive skills that are also associated with resilience, persistence, and invest-

ment behavior (e.g. risk tolerance, conscientiousness), but not with non-cognitive skills that

proxy altruism (agreeableness), sociability (extraversion) or openness to cultural experiences. I

refer to this additional analysis as mechanism 5.

5 Estimation results

5.1 Main specification

Table 3 presents the estimation results from both tobit (outcome: "weeklywork-hours") and probit

models (outcomes: "out of the labor force", "part-time work", "unemployment"). Reported are

marginal effects of the main variables of interest. Coefficients from the full model are reported

in Table A.4 (Online Appendix). All marginal (probability) effects are calculated for a 1 standard
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deviation increase in the respective variable, or, as in the case for the interaction effects, for amove

from the bottom to the top 10th percentile in negative control beliefs.29 As pointed out in Ai and

Norton (2003), computing the correct marginal probability effect of α3 is not straightforward in

nonlinear regression models. Even if this coefficient is statistically indistinguishable from 0, the

cross-partial derivative can still be different from 0. To compute the marginal interaction effect in

the nonlinear models, I follow the computation method suggested in Karaca-Mandic et al. (2012).

For the average individual in the sample (C̄Bi = 0), experiencing a health shock in period

t − 1 leads to a reduction in work hours by almost 4 hours (significant at the 1% level) and an

increase in the probability of dropping out of the labor market or becoming unemployed by 1.6

and 1.1 percentage points, respectively (significant at the 1% and 5% level). There is substantial

heterogeneity in this effect by control beliefs on both work hours and inactivity. On average,

men with negative control beliefs (90th percentile), who experienced a health shock, work 4.6

hours less per week (significant at the 5% level) than men with positive control beliefs (10th per-

centile). These interaction effects imply a 12% reduction in work hours relative to the mean work

hours of men with positive control beliefs who also experienced a health shock. The difference in

the effect of ill health on inactivity for men with positive control and men with negative control

control beliefs is 0.043 (significant at 1% level). This means that initially full-time employed and

healthy men with negative control beliefs who experienced a health shock in period t− 1 are 4.3

percentage points more likely to drop out of the labor force a year after the health shock than

comparable men with positive control beliefs, ceteris paribus. Relative to the mean probability of

4.2% in the sample of men with positive control beliefs who also experienced a health shock, this

implies a 103% increase in the probability of dropping out of the labor force. The heterogeneous

response to a health shock is sizeable in comparison to the marginal effects calculated for other

important determinants of labor supply. For instance, older individuals (55-60 years) are 1.8 per-

centage points more likely to drop out of the labor force than young individuals (25-29). Given

that none of the changes in labor supply are associated with unemployment or retirement, they

are likely to be associated with movements into disability insurance.
29The estimated models with interaction effects between control beliefs and the health shock are preferred over

a specification without interaction term for the outcomes "out of the labor force" and "work-hours" according to
both AIC and McFadden’s R-squared criteria (See Table 3, bottom panel). The models pass a functional form test
(Pregibon’s Link) at the 5% level of significance or better for all models except for the outcome "part-time".
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Choosing an alternative definition of the binary measure of a health shock does not change

this conclusion. For instance, increasing the threshold of hospital admissions to 20 or more days

or using deteriorations in self-assessed health by two ormore units (2 sample standard deviations)

- increases the marginal probability effect of interest from 4.3 percentage points to 8.1 percent-

age points and 6.5 percentage points, respectively and both interaction effects are significant at

the 1% level. Using annual changes in health care utilization that exceed 2 sample standard de-

viations - for instance changes in health care visits that exceed 21 visits or changes in nights

spent at hospital that exceed 20 - as a basis for constructing the health shock yields marginal

probability effects of interest of 4.3 percentage points (significant at the 1% level) and 4.9 per-

centage points (significant at the 10% level), respectively. Hence, using alternative health shock

definitions yield interaction effects that are equivalent or exceed the interaction effects obtained

from the benchmark model. Finally, restricting the sample to individuals who have no missing

values on education and non-cognitive skills (544 individuals with a health shock), increases the

marginal probability effect from 4.3 to 5.4 percentage points. Due to systematic dropout of the

sample for individuals with worse ex ante health, ex ante labor force attachment, and control

perceptions, the presented estimates are likely to be a lower bound.

5.2 Controlling for alternative mechanisms

The results of the previous section demonstrate that the moderating effects of positive control

beliefs are significant and sizeable. They continue to persist when controlling in a rigorous way

for mechanisms 2 to 5. Figure 5 summarizes all treatment effects of interest for the outcome

"dropping out of the labor force" for alternative specifications that seek to turn off one-by-one

mechanisms 2-5. The boxplots report themarginal probability effect (black dot) and their 95% con-

fidence intervals (capped lines). The numbers on the upper horizontal axis indicate theModel. For

comparison, each boxplot also reports the benchmark effect from the main specification (Model

1).

Figure 5(a) reports the robustness checks regardingmechanism 2. The interaction effect of the

health shock with control beliefs remains large for both men with minimum schooling (Model 2)

and men with intermediate levels of schooling (Model 3), while there is no statistically significant

interaction effect for men with university education (Model 4). Men with minimum schooling
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who have strong negative control beliefs are almost 7 percentage points more likely to drop

out of the labor market after the experience of a health shock than men with the same level of

schooling but who have strong positive control beliefs. The difference in the dropout probability

is 4 percentage points for men with intermediate levels of schooling (both significant at the 10%

level). In addition, among all men who have no private health insurance, the interaction effect

is over 6 percentage points, and significant at the 1% level. This suggests that heterogeneous

labor-supply responses to health shocks are not driven by an education or insurance gradient in

control perceptions.

Figure 5(b) reports the robustness checks regarding mechanism 3. Models 2 and 3 show that

the treatment effect becomes slightly larger (5 percentage points) when not controlling for ex

ante health and not conditioning the sample on men in good health in period t-2, respectively.

Restricting the sample to younger men (Model 4), reduces the treatment effect to 3.2 percentage

points, but it is still significant at the 10% level. The treatment effect remains around 3 and 5

percentage points when restricting the sample to men who are not chronically ill (Model 5), who

survived the health shock (Model 6), and who were in good ex ante health between 1994 and 1996

(Model 7).

Figure 5(c) reports the robustness check regarding mechanism 4. Instead of using a binary

measure of the health shock that takes the value 1 if the individual spent 10 or more nights in

hospital, I use seven binary variables, which each indicates a specific range of nights spent in

hospital. There are no significant interaction effects of negative control beliefs and episodes of

hospital admissions at the lower range (Models 2 to 5). However, I find strong and significant

interaction effects for the higher intensities of hospital admissions (Models 6 to 8). For instance,

men who were admitted to hospital for 20 to 24 nights and who score high on negative control

beliefs are 7 percentage points more likely to drop out of the labor market than men with the

same number of hospital admissions and strong positive control beliefs (significant at the 1%

level). These interaction effects are 7 and 10 percentage points, respectively, for men who were

admitted to hospital for 25 to 34 nights (Model 7) and for 35 or more nights (Model 8). Due to a

smaller number of observations, these effects are estimated more imprecisely.

Finally, I test whether control beliefs merely proxy other individual-specific heterogeneity

that may be equally well be proxied by any other non-cognitive skills that have been deemed im-
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portant determinants of health and labor-market outcomes in the previous literature. Figure 5(d)

depicts the interaction treatment effects of interest for risk tolerance and the Big-Five personality

traits. As these personality traits are only observed for a smaller sample of men who experienced

a health shock (N=544), because they are measured ten years after control perceptions were mea-

sured, I have re-estimated the interaction effect of control perceptions. In this selected sample,

this interaction effect is 5.4 percentage points (significant at the 1% level).

Each marginal effect depicted in 5(d) is interpreted for a move from the bottom to the top 10th

percentile of the respective trait distribution. I find equally strong interaction effects for both

willingness to take risks and conscientiousness, but no significant interaction effects for any of

the other personality traits. Men at the bottom end of the risk tolerance and conscientiousness

distribution are 4 and 5 percentage points, respectively, more likely to drop out of the labormarket

after the experience of a health shock than men at the top end of the risk and conscientiousness

distribution. These alternative interaction effects are statistically significant at the 10% and 5%

level, respectively. The implications of this finding are discussed in the next section.

6 Discussion and conclusion

In this study, I tested whether men with positive control beliefs are better in buffering the ex-

perience of episodes of ill health than men with negative control beliefs. The main hypothesis

for why resilient behavior is observed for individuals with positive control beliefs is a theoretical

argument: positive control beliefs help individuals to invest in their health - or remain psycholog-

ically functional - in the advent of health-related adversity. This causal channel was referred to

as mechanism ♯ 1. Using longitudinal survey data from Germany, a country with an almost uni-

versal and homogenous health care system, I find robust evidence that men with positive ex ante

control beliefs are significantly less likely to drop out of the labor force or reduce their hours of

work than men with negative control beliefs following a long episode of ill health, ceteris paribus.

It is also true that men with positive control beliefs are on average better educated and more

likely to have private health insurance (alternative mechanism ♯ 2), in better long-term, ex ante

health (alternative mechanism ♯ 3), and less likely to experience more severe episodes of ill health

(alternative mechanism ♯ 4). However, controlling for these alternative channels through which

control beliefs could affect labor-supply responses does not change my conclusions. The bene-
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ficial effects of positive control beliefs are strongest for men from disadvantaged backgrounds,

for men without access to private health insurance, or for men who experience extremely long

episodes of ill health. Importantly, the buffering effects of positive control beliefs also hold for

younger and overall healthier men.

Having shut off one-by-one alternative mechanisms 2, 3, and 4, leaves mechanism 1 as a

likely explanation for heterogeneous labor-supply responses to episodes of ill health. The proof-

by-exclusion approach is valid under the assumption that my theoretical model that links la-

bor supply with health status and health investment adequately reflects all behavioral channels.

There is still no certainty that men with positive control beliefs truly invest more in their health

in the advent of a health shock. It could also be that men with negative control beliefs invest just

the same as men with positive control beliefs, but that the positive effects of their investment are

neutralized through increased levels of ill mental health, which has been hypothesized and tested

for in Buddelmeyer and Powdthavee (2016). In the absence of better data it will be hard to tease

out these differential pathways, but both are consistent with the notion of resilience.

Yet, the argument that individuals with positive control beliefs are more likely to invest in

the face of adversity is strengthened by the observation that risk aversion and conscientiousness

also act as buffer against health shocks. Risk tolerance correlates significantly with control beliefs

both in my sample30 and in other longitudinal data (e.g. Becker et al. 2012). Risk tolerance has

been associated with higher willingness to invest in financial markets and physical activity (e.g.

Dohmen et al. 2011). This would be consistent withmechanism 1which says that individuals with

better coping skills invest more to counterbalance episodes of ill health. Similarly, conscientious-

ness may also function as a buffer against ill health because highly-conscientious individuals are

more effective at following protocols and treatment advice from their doctors (See Christensen

and Johnson 2002, for an overview). Many studies found that conscientiousness is also associ-

ated with control beliefs (Marshall et al. 2014) and with active problem-focused coping behavior

(Watson and Hubbard 1996). In my data, I cannot find significant interaction effects for any other

non-cognitive skill, ruling out the possibility that self-assessed control perceptions measure just

any unobserved heterogeneity. Other studies that have explored the interaction effects of control
30Willingness to take risks correlates negatively in my sample with negative control beliefs (-0.249, standard error

.052).
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perceptions with life events (Buddelmeyer and Powdthavee 2016; Caliendo et al. 2014; McGee

2015) have not tested for such alternative interaction effects. Therefore, my robustness-check

findings cannot be compared.

The important conclusion of my analysis is that despite the many sources of confounding

factors control beliefs have real labor-market consequences and - in combination with risk aver-

sion and conscientiousness - they stand out as good observable measures to approximate what

the positive psychology literature would call resilience (Seligman 2011). Although it is difficult

to draw conclusions for other countries, one could expect that personality-related differences in

labor-supply response behavior could be similar in countries which have comparably generous

welfare systems such as France, Italy, Sweden or Britain. One would expect smaller differences in

personality-related response behaviors in countries with less generous welfare systems, such as

the US or Australia, where copayments for health care utilization are higher, sick-leave arrange-

ments are less generous, and work-place protection is less secure than in Germany.

Teaching individuals resilience - the ability to interpret experiences in an optimistic fashion

and to understand the importance of taking self-responsibility - could be one cost-effective way

to counter-balance rising health care costs associated with an aging society and with increasing

prevalence rates of avoidable illnesses such as obesity, diabetes and cardiovascular disease (Cobb-

Clark et al. 2014). Teaching positive control beliefs in adulthood is not easy - many interventions

that sought to change control beliefs in adulthood as one method of improving life-style choices

have tended to fail (see Ashford et al. 2010, for an overview). One reason could be that control

beliefs do not dramatically change in adulthood, even in the presence of severe life events (Cobb-

Clark and Schurer 2013; Schurer 2015). This does not mean that the way individuals perceive

the world is hard-wired,31 but it is consistent with the suggestion that adulthood interventions

would require more heavy artillery to tweak belief systems. Such heavy artillery was imposed on

long-term recipients of income support from two regions in Canada (Self Sufficiency Project), by

paying income subsidies that aimed at increasing labor supply (See Gottschalk 2005). Although

not aimed at improving control beliefs per se, Gottschalk (2005) showed that they changed for

individuals over the 36-month duration of the intervention. There are also promising interven-
31For evidence against the hypothesis that character traits are hard-wired from young adulthood onwards, see

Roberts et al. (2006).
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tions in developing countries that aim at improving the way community members think about

the future, and which were shown to be effective (Bernard et al. 2014). Seligman (2011) discusses

a promising new approach to teach at large scale US military staff skills suitable for dealing with

traumatizing events.

Alternatively, interventions could directly target children or adolescents to improve percep-

tions of control (e.g. Schurer 2016; Almlund et al. 2011; Cunha and Heckman 2009; Heckman

and Masterov 2007, for possible routes of intervention). Some promising initiatives are emerging

world-wide that aim at strengthening resilience in school children. For instance, the Penn Re-

silience Program teaches elementary and middle school students to detect inaccurate thoughts,

to evaluate the accuracy of their thoughts, and to challenge negative beliefs by considering alter-

native interpretations.32 Similar resilience programs are currently experimented with in Victoria

(Australia),33 in Britain (Challen et al. 2011), and in Canada.34 Preliminary evidence from random-

ized controlled trials of the UK resilience program suggest that, at least in the short-run, students

depression scores, school attendance and performance improved (Challen et al. 2011).

To conclude, the empirical findings in this study offer a new understanding of how differ-

ences in control perceptions can significantly and beneficially affect the way in which men from

one advanced continental European economy respond to episodes of ill health, and therefore

influence life-cycle work trajectories. Future research is needed to better understand whether

beneficial economic consequences of resilience are gender-specific or specific to the nature of

welfare regimes. Thus, the role and development of control perceptions deserve greater empha-

sis in education and health policy.
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Table 1: Components of locus of control recorded in 1994-1996

Variable Mean Std. Dev. Min. Max. N Cronbach’s α

if item omitted

Scale: 1 Fully applies - 4 Does not apply

Q. 1 Have Control Over Own Life 6,068 1.880 0.710 1 4 0.722

Q. 2 Plans Are Unsuccessful 6,068 2.117 0.815 1 4 0.680

Q. 3 Behavior Determines Life 6,068 1.850 0.689 1 4 0.739

Q. 4 No One Can Escape Their Destiny 6,068 2.614 0.947 1 4 0.703

Q. 5 I Get Something Because Of Luck 6,068 2.012 0.773 1 4 0.699

Q. 6 Plans Turn To Reality 6,068 2.240 0.694 1 4 0.714

Q. 7 Something Unforseen Happens 6,068 2.280 0.835 1 4 0.656

Q. 8 The Outcome Is Always Different 6,068 2.265 0.870 1 4 0.656

Cronbach’s α with eight items 0.726
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Figure 1: Mean weekly hours worked of healthy and full-time employed working-age men (t−2)
before and after the experience of a health shock (t-1), presented separately for menwith negative
and positive control beliefs. Dotted lines represent 95% confidence intervals. SOEP, 1997 to 2012
(N=649).
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Figure 2: Change in health status and health care utilization before, during, and after experiencing
a health shock (t − 1), by positive and negative control beliefs (N=649 individuals). Dotted lines
represent 95% confidence intervals.
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Table 2: Summary statistics for sample of individuals who ex-
perienced a health shock, by negative and positive control be-
liefs

Positivea Negativeb p-valuec

Out of labor force (t) 0.042 0.077 0.059
Partime work (t) (0 < Weekly work hours < 20) 0.054 0.069 0.453
Unemployment (t) 0.065 0.111 0.042
Weekly work hours (t) 39.212 35.364 0.007
Age 46.615 45.306 0.068
Years of education 12.933 10.936 0.000
Minimum schooling 0.273 0.509 0.000
Intermediate schooling 0.365 0.396 0.433
University education 0.362 0.095 0.000
Ex ante health (t=0) (1 very good, 5 bad) 2.362 2.497 0.005
Risk tolerance 0.342 0.151 0.004
Conscientiousness 0.104 0.063 0.489
Extraversion 0.037 –0.148 0.002
Agreeableness –0.125 –0.212 0.149
Openness 0.135 –0.164 0.000
Neuroticism –0.241 0.024 0.000
Cognitive ability 0.227 0.044 0.276
Accumulated unemployment exp. (t-2) 0.418 0.831 0.000
Weekly work hours (t-2) 44.202 43.583 0.412
Hourly wage in Euro (t-2) 16.602 12.790 0.000
Years spent at firm (t-2) 12.530 10.754 0.029
Firm size (t-2): < 20 staff 0.273 0.314 0.265
Firm size (t-2): 20–199 staff 0.192 0.211 0.564
Firm size (t-2): 20––1999 staff 0.215 0.239 0.480
Firm size (t-2): 2000+ staff 0.292 0.213 0.025
Self-employed 0.027 0.023 0.764
Ever smoked 0.546 0.560 0.721
Has private health insurance 0.123 0.041 0.000
Married 0.758 0.694 0.073
Foreigner 0.065 0.136 0.002
Partner is inactive 0.208 0.254 0.163
Partner has poor health 0.127 0.105 0.406
Industry: Mining (t-2) 0.019 0.031 0.343
Industry: Manufacturing (t-2) 0.292 0.339 0.205
Industry: Retail (t-2) 0.073 0.098 0.266
Industry: Transport (t-2) 0.081 0.077 0.866
Industry: Construction (t-2) 0.019 0.051 0.023
Occupation: Legislator or management (t-2) 0.069 0.072 0.893
Occupation: Professional (t-2) 0.188 0.033 0.000
Occupation: Technician (t-2) 0.235 0.116 0.000
Occupation: Service (t-2) 0.042 0.036 0.687
Missing: Education 0.000 0.018 0.008
Missing: Risk tolerance 0.088 0.149 0.017
Missing: Big Five 0.127 0.183 0.052
Missing: Cognitive ability 0.988 0.995 0.398
Missing: Occupation/Industry 0.019 0.013 0.535
Observations 389 260

Note: a : Negative control beliefs > 75th percentile. b : Positive control beliefs 6 75th
percentile. c : refers to p-value of test for equality of means between individuals with pos-
itive and negative control beliefs. Omitted are year- and state-dummy variables. Sample
of all individuals aged between 25 and 60 who were working fulltime and were healthy in
period t− 2, but who experienced a health shock between period t− 2 and t− 1.
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Table 3: Estimation results: Marginal probability effects of variables of interest.

(1) (2) (3) (4)
Work hours Inactive Part-time Unempl.

Health shock (0,1) –3.856 0.0162 –0.0069 0.0106
(0.7337) (0.0055) (0.0088) (0.0044)

Negative control beliefs (Std) –0.6912 0.0113 0.0002 0.0009
(0.1516) (0.0041) (0.0080) (0.0038)

Interaction health shock × neg. control beliefs –4.5516 0.0434 0.0004 0.0034
(2.0280) (0.0169) (0.0224) (0.0197)

Base level or probabilitya 39.2 0.042 0.054 0.065

AIC: with interaction 210110.1 3962.6 12723.0 7500.1
AIC: without interaction 210119.4 3965.3 12721.0 7498.1
McFadden R2: with interaction 0.015 0.0823 0.0553 0.1841
McFadden R2:without interaction 0.015 0.0816 0.0555 0.1843
NT 27237 28223 27681 28223
N 3730 3793 3762 3793
T max 16 16 16 16

Note: Table 3 reports marginal effects of variables of interest on either the probability to a change la-
bor force status (Probit models) or on weekly hours worked (Tobit model, censored from below at 0).
Interaction effects are calculated according to Karaca-Mandic et al. (2012) in STATA. Standard errors
in parentheses are calculated with the delta method in STATA. Full estimation results are presented in
Table A.4 in the Online Appendix. Number of individuals who experienced a health shock defined as
an increase in the nights spent at hospital from period t − 2 to t − 1 of 10 or more is 649. The total
number of individuals who experienced a health shock and who changed labor force status in period
t are 41 (inactivity), 40 (part-time) and 60 (unemployment). a: Base level or probability refers to time
period t for individuals with positive control beliefs who also experienced a health shock.
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ONLINE APPENDIX

Table A.1: Illustration of three-year interval generation for analysis

t-2 t-1 t
t-2 t-1 t

1 1997 1998 1999
2 1998 1999 2000
3 . . . . . . . . .
...

...
...

13 2009 2010 2011
14 2010 2011 2012
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Figure A.1: Description of number of nights spent in hospital in estimation sample
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Table A.2: Probability of dropping out of the
sample in period t + 1: Presented are marginal
probability effects based on coefficients from a
Probit model

Probability
dropout from
Sample in t+ 1

Ex ante health (Std) –0.000953**
(0.000384)

Ex ante control beliefs (Std) 0.000666*
(0.000363)

Health shock 0.0124***
(0.00325)

Ages 30-34 0.0000751
(0.00191)

Ages 35-39 –0.00298*
(0.00173)

Ages 40-44 –0.00443***
(0.00167)

Ages 45-49 –0.00191
(0.00181)

Ages 50-54 –0.00246
(0.00183)

Ages 55-60 –0.00195
(0.00182)

Unemployment experience 0.000405***
(0.000143)

Currently out of labor force 0.00776***
(0.00132)

Base probability 0.0054

Observations (NT) 40815

Note: The dependent variable is a binary in-
dicator of not being interviewed in t+1 due
to refusal, moving abroad, dying, or the in-
ability of interview team to establish contact
with the individual or household.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A.4: Full estimation results: Benchmark model

(1) (2) (3) (4)
Inactive Work hours Part-time Unempl.
Probit Tobit Probit Probit

Average health 1994-1996 (Std) (1 very good, 5 bad) 0.050** 0.275* 0.007 0.007
(0.024) (0.144) (0.023) (0.018)

Negative control beliefs (Std) 0.044* -0.651*** -0.029 0.042**
(0.026) (0.152) (0.023) (0.020)

Health shock 0.493*** -3.857*** -0.064 0.279***
(0.103) (0.734) (0.086) (0.088)

Health shock × Negative control beliefs (Std) 0.181** -1.737** -0.001 -0.000
(0.090) (0.774) (0.076) (0.079)

Base group: Age 25-29 0.000 0.000 0.000 0.000
(.) (.) (.) (.)

Age 30-34 -0.043 1.443** -0.051 0.067
(0.111) (0.560) (0.077) (0.082)

Age 35-39 -0.159 1.184** -0.110 0.112
(0.118) (0.599) (0.089) (0.087)

Age 40-44 -0.148 1.054* -0.028 0.184**
(0.120) (0.629) (0.092) (0.089)

Age 45-49 0.032 1.193* -0.036 0.231**
(0.120) (0.669) (0.095) (0.092)

Age 50 to 54 0.113 1.240* 0.022 0.220**
(0.132) (0.707) (0.100) (0.099)

Age 55-60 0.527*** -1.950** 0.114 0.724***
(0.124) (0.785) (0.105) (0.094)

Years of education (Std) 0.013 1.096*** -0.029 -0.201***
(0.042) (0.224) (0.035) (0.036)

Risk tolerance (Std) -0.047* 0.558*** -0.040 -0.010
(0.027) (0.152) (0.027) (0.021)

Conscientiousness (Std) -0.045** 0.847*** -0.124*** -0.035*
(0.023) (0.161) (0.024) (0.021)

Extraversion (Std) 0.052* 0.594*** -0.015 -0.015
(0.028) (0.157) (0.029) (0.023)

Agreeableness (Std) -0.002 -0.440*** 0.050* 0.028
(0.028) (0.150) (0.029) (0.020)

Openness to experience (Std) 0.046* -0.152 0.047 -0.022
(0.028) (0.160) (0.030) (0.022)

Neuroticism (Std) 0.060** -0.195 -0.009 0.064***
(0.025) (0.150) (0.026) (0.020)

Cognitive ability (Std) -0.051 -0.195 0.033 0.106**
(0.045) (0.187) (0.029) (0.044)

Accumulated unemployment experience (t-2) 0.039*** -1.482*** 0.063*** 0.098***
(0.014) (0.163) (0.015) (0.011)

Hourly wage ln (t-2) -0.022 -0.082 -0.060 -0.174***
(0.066) (0.387) (0.055) (0.046)

Years spent at current firm (t-2) -0.036*** 0.201*** 0.009 -0.060***
(0.008) (0.046) (0.007) (0.007)

Years spent at current firm (t-2)2 0.001*** -0.008*** -0.000 0.002***
(0.000) (0.001) (0.000) (0.000)

Firm size 2-20 employees (t-2) 0.120* 1.552*** -0.047 0.071
(0.063) (0.394) (0.055) (0.046)

Firm size: 200-2000 employees (t-2) -0.105 -0.321 0.050 -0.045
(0.069) (0.316) (0.061) (0.053)

Continued on next page
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continued from previous page

(1) (2) (3) (4)
Inactive Work hours Part-time Unempl.
Probit Tobit Probit Probit

Firm size: over 2000 employees (t-2) 0.079 -1.086*** 0.103 -0.119**
(0.067) (0.333) (0.065) (0.058)

Self-employed (t-2) 0.067 5.690*** 0.481*** -0.424***
(0.123) (0.907) (0.123) (0.129)

Has ever been a smoker 0.131*** 0.052 -0.032 0.117***
(0.049) (0.279) (0.047) (0.040)

Has private health insurance -0.179** 3.076*** -0.159** -0.985***
(0.087) (0.409) (0.076) (0.179)

Married -0.148*** 1.786*** -0.067 -0.287***
(0.057) (0.329) (0.054) (0.045)

Immigrant after 1984 0.039 -1.421*** 0.218*** 0.184***
(0.079) (0.465) (0.073) (0.064)

Partner is unemployed or inactive 0.141** -0.860*** -0.045 0.225***
(0.055) (0.294) (0.051) (0.043)

Partner’s health status is poor 0.053 -0.190 0.052 0.006
(0.068) (0.373) (0.058) (0.057)

Regional annual unemployment rate (Std) 0.077 -1.363*** -0.003 0.113
(0.114) (0.485) (0.081) (0.080)

Schleswig-Holstein 0.072 -0.895 -0.354* -0.032
(0.192) (0.957) (0.184) (0.149)

Hamburg -0.091 0.108 -0.346 0.092
(0.248) (1.303) (0.258) (0.193)

Lower-Saxony 0.236*** 0.219 0.056 -0.158*
(0.091) (0.529) (0.084) (0.084)

Hessia 0.172 0.279 -0.178 -0.036
(0.120) (0.616) (0.110) (0.113)

Rhineland-Palatinate 0.095 -0.247 -0.133 0.081
(0.131) (0.704) (0.121) (0.109)

Baden-Wuerttemberg 0.110 -0.235 0.014 -0.182
(0.146) (0.668) (0.111) (0.118)

Bavaria 0.194 -0.888 -0.156 0.036
(0.139) (0.646) (0.115) (0.108)

Saarland 0.362 -0.705 -0.007 0.072
(0.239) (1.265) (0.301) (0.184)

Berlin 0.052 0.279 0.072 0.114
(0.239) (1.244) (0.177) (0.171)

Brandenburg -0.021 0.611 -0.097 0.170
(0.190) (1.036) (0.151) (0.137)

Mecklenburg-Vorpommern -0.141 0.689 -0.356 0.164
(0.232) (1.191) (0.218) (0.170)

Saxony -0.020 0.617 -0.270** 0.111
(0.166) (0.807) (0.136) (0.117)

Saxony-Anhalt -0.164 2.346* -0.476** 0.082
(0.261) (1.250) (0.191) (0.169)

Thuringia -0.043 1.488 -0.352* 0.175
(0.154) (0.937) (0.195) (0.110)

Year 1999 -0.015 0.826** 0.024 -0.201***
(0.076) (0.331) (0.041) (0.059)

Year 2000 -0.031 0.783** -0.015 -0.224***
(0.086) (0.376) (0.050) (0.067)

Year 2001 -0.033 0.456 -0.072 -0.167**

Continued on next page
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(1) (2) (3) (4)
Inactive Work hours Part-time Unempl.
Probit Tobit Probit Probit
(0.089) (0.386) (0.053) (0.066)

Year 2002 0.055 0.499 -0.069 -0.234***
(0.081) (0.367) (0.052) (0.070)

Year 2003 -0.159 0.545 0.017 -0.018
(0.098) (0.393) (0.053) (0.068)

Year 2004 -0.175* 0.686* -0.025 -0.060
(0.103) (0.400) (0.057) (0.074)

Year 2005 -0.171 1.037** -0.074 -0.098
(0.111) (0.428) (0.062) (0.081)

Year 2006 -0.284** 1.492*** 0.025 -0.155*
(0.129) (0.434) (0.063) (0.087)

Year 2007 -0.168 1.783*** -0.060 -0.462***
(0.131) (0.471) (0.079) (0.119)

Year 2008 -0.352** 1.204** -0.116 -0.316***
(0.170) (0.562) (0.093) (0.122)

Year 2009 -0.235* 1.062** 0.004 -0.201*
(0.137) (0.530) (0.082) (0.109)

Year 2010 -0.148 0.592 -0.044 -0.170
(0.150) (0.578) (0.093) (0.117)

Year 2011 -0.162 1.443** -0.073 -0.627***
(0.177) (0.638) (0.104) (0.178)

Year 2012 -0.311 1.408** -0.130 -0.456***
(0.198) (0.694) (0.113) (0.173)

Worked in mining sector (t-2) 0.230* 2.801** -0.212 -0.019
(0.118) (1.121) (0.163) (0.105)

Worked in manufacturing industry (t-2) -0.161*** 0.587** 0.286*** -0.125***
(0.060) (0.290) (0.044) (0.046)

Worked in retail sector (t-2) -0.017 2.239*** -0.015 -0.089
(0.080) (0.480) (0.078) (0.061)

Worked in transportation sector (t-2) -0.091 4.462*** -0.342*** -0.308***
(0.104) (0.681) (0.098) (0.088)

Worked in construction sector (t-2) 0.124 0.160 -0.213 -0.250**
(0.133) (0.662) (0.170) (0.127)

Occupation: Legislator or management (t-2) -0.240** 5.009*** -0.325*** -0.064
(0.107) (0.561) (0.086) (0.084)

Occupation: Professional (t-2) -0.164* 1.021** -0.027 0.007
(0.098) (0.450) (0.075) (0.080)

Occupation: Technical (t-2) -0.113 0.866** 0.037 -0.156**
(0.076) (0.353) (0.068) (0.065)

Occupation: Service (t-2) 0.014 1.378** 0.000 -0.212**
(0.105) (0.653) (0.113) (0.102)

Constant -1.353*** 38.556*** -1.715*** -1.995***
(0.370) (2.011) (0.319) (0.463)

Sigma 12.973***
(0.169)

Observations (NT) 28223 27237 27681 28223
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